1,859 research outputs found

    Vortex-chain phases in layered superconductors

    Full text link
    Layered superconductors in tilted magnetic field have a very rich spectrum of vortex lattice configurations. In the presence of in-plane magnetic field, a small c-axis field penetrates in the form of isolated vortex chains. The structure of a single chain is mainly determined by the ratio of the London [λ\lambda] and Josephson [λJ\lambda_{J}] lengths, α=λ/λJ\alpha= \lambda/\lambda_{J}. At large α\alpha the chain is composed of tilted vortices [tilted chains] and at small α\alpha it consists of a crossing array of Josephson vortices and pancake stacks [crossing chains]. We studied the chain structures at intermediate α\alpha's and found two types of behavior. (I) In the range 0.4<α<0.50.4 < \alpha < 0.5 a c-axis field first penetrates in the form of pancake-stack chains located on Josephson vortices. Due to attractive coupling between deformed stacks, their density jumps from zero to a finite value. With further increase of the c-axis field the chain structure smoothly evolves into modulated tilted vortices and then transforms via a second-order phase transition, into the tilted straight vortices. (II) In the range 0.5<α<0.650.5 < \alpha < 0.65 a c-axis field first penetrates in the form of kinks creating kinked tilted vortices. With increasing the c-axis field this structure is replaced via a first-order phase transition by the strongly deformed crossing chain. This transition is accompanied by a large jump of pancake density. Further evolution of the chain structure is similar to the higher anisotropy scenario: it smoothly transforms back into the tilted straight vortices.Comment: Accepted to Phys. Rev. B, 20 pages 12 figures, animation of chain structure is available in http://mti.msd.anl.gov/movies/Chains/Nl8al06Im.gif (gif, 441 KB

    The branching structure of diffusion-limited aggregates

    Full text link
    I analyze the topological structures generated by diffusion-limited aggregation (DLA), using the recently developed "branched growth model". The computed bifurcation number B for DLA in two dimensions is B ~ 4.9, in good agreement with the numerically obtained result of B ~ 5.2. In high dimensions, B -> 3.12; the bifurcation ratio is thus a decreasing function of dimensionality. This analysis also determines the scaling properties of the ramification matrix, which describes the hierarchy of branches.Comment: 6 pages, 1 figure, Euro-LaTeX styl

    Deep Near-Infrared Observations and Identifications of Chandra Sources in the Orion Molecular Cloud 2 and 3

    Full text link
    We conducted deep NIR imaging observations of the Orion molecular cloud 2 and 3 using QUIRC on the 88-inch telescope of the University of Hawaii. Our purposes are 1) to generate a comprehensive NIR source catalog of these star forming clouds, and 2) to identify the NIR counterpart of the Chandra X-ray sources that have no counterpart in the 2MASS catalog. Our J-, H-, and K-band observations are about 2 mag deeper than those of 2MASS, and well match the current Chandra observation. We detected 1448 NIR sources, for which we derived the position, the J-, H-, and K-band magnitude, and the 2MASS counterpart. Using this catalog, we identified the NIR counterpart for about 42% of the 2MASS-unIDed Chandra sources. The nature of these Chandra sources are discussed using their NIR colors and spatial distributions, and a dozen protostar and brown dwarf candidates are identified.Comment: 39 pages, 9 postscript figures, accepted for publication in A

    Topological self-similarity on the random binary-tree model

    Full text link
    Asymptotic analysis on some statistical properties of the random binary-tree model is developed. We quantify a hierarchical structure of branching patterns based on the Horton-Strahler analysis. We introduce a transformation of a binary tree, and derive a recursive equation about branch orders. As an application of the analysis, topological self-similarity and its generalization is proved in an asymptotic sense. Also, some important examples are presented

    Coexistence of Superconductivity and Antiferromagnetism in Multilayered High-TcT_c Superconductor HgBa2_2Ca4_4Cu5_5Oy_y: A Cu-NMR Study

    Full text link
    We report a coexistence of superconductivity and antiferromagnetism in five-layered compound HgBa2_2Ca4_4Cu5_5Oy_y (Hg-1245) with Tc=108T_c=108 K, which is composed of two types of CuO2_2 planes in a unit cell; three inner planes (IP's) and two outer planes (OP's). The Cu-NMR study has revealed that the optimallydoped OP undergoes a superconducting (SC) transition at Tc=108T_c=108 K, whereas the three underdoped IP's do an antiferromagnetic (AF) transition below TN∼T_N\sim 60 K with the Cu moments of ∼(0.3−0.4)μB\sim (0.3-0.4)\mu_B. Thus bulk superconductivity with a high value of Tc=108T_c=108 K and a static AF ordering at TN=60T_N=60 K are realized in the alternating AF and SC layers. The AF-spin polarization at the IP is found to induce the Cu moments of ∼0.02μB\sim0.02\mu_B at the SC OP, which is the AF proximity effect into the SC OP.Comment: 6 pages, 8 figure
    • …
    corecore