11 research outputs found
N-best Response-based Analysis of Contradiction-awareness in Neural Response Generation Models
Avoiding the generation of responses that contradict the preceding context is
a significant challenge in dialogue response generation. One feasible method is
post-processing, such as filtering out contradicting responses from a resulting
n-best response list. In this scenario, the quality of the n-best list
considerably affects the occurrence of contradictions because the final
response is chosen from this n-best list. This study quantitatively analyzes
the contextual contradiction-awareness of neural response generation models
using the consistency of the n-best lists. Particularly, we used polar
questions as stimulus inputs for concise and quantitative analyses. Our tests
illustrate the contradiction-awareness of recent neural response generation
models and methodologies, followed by a discussion of their properties and
limitations.Comment: 8 pages, Accepted to The 23rd Annual Meeting of the Special Interest
Group on Discourse and Dialogue (SIGDIAL 2022
Target-Guided Open-Domain Conversation Planning
Prior studies addressing target-oriented conversational tasks lack a crucial
notion that has been intensively studied in the context of goal-oriented
artificial intelligence agents, namely, planning. In this study, we propose the
task of Target-Guided Open-Domain Conversation Planning (TGCP) task to evaluate
whether neural conversational agents have goal-oriented conversation planning
abilities. Using the TGCP task, we investigate the conversation planning
abilities of existing retrieval models and recent strong generative models. The
experimental results reveal the challenges facing current technology.Comment: 9 pages, Accepted to The 29th International Conference on
Computational Linguistics (COLING 2022
Chat Translation Error Detection for Assisting Cross-lingual Communications
In this paper, we describe the development of a communication support system
that detects erroneous translations to facilitate crosslingual communications
due to the limitations of current machine chat translation methods. We trained
an error detector as the baseline of the system and constructed a new
Japanese-English bilingual chat corpus, BPersona-chat, which comprises
multiturn colloquial chats augmented with crowdsourced quality ratings. The
error detector can serve as an encouraging foundation for more advanced
erroneous translation detection systems
N-best Response-based Analysis of Contradiction-awareness in Neural Response Generation Models
Proceedings of the SIGdial 2022 Conference, Heriot-Watt University, Edinburgh, UK. 07-09, September, 2022Avoiding the generation of responses that contradict the preceding context is a significant challenge in dialogue response generation. One feasible method is post-processing, such as filtering out contradicting responses from a resulting n-best response list. In this scenario, the quality of the n-best list considerably affects the occurrence of contradictions because the final response is chosen from this n-best list. This study quantitatively analyzes the contextual contradiction-awareness of neural response generation models using the consistency of the n-best lists. Particularly, we used polar questions as stimulus inputs for concise and quantitative analyses. Our tests illustrate the contradiction-awareness of recent neural response generation models and methodologies, followed by a discussion of their properties and limitations