79 research outputs found

    ParaHaplo: A program package for haplotype-based whole-genome association study using parallel computing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Since more than a million single-nucleotide polymorphisms (SNPs) are analyzed in any given genome-wide association study (GWAS), performing multiple comparisons can be problematic. To cope with multiple-comparison problems in GWAS, haplotype-based algorithms were developed to correct for multiple comparisons at multiple SNP loci in linkage disequilibrium. A permutation test can also control problems inherent in multiple testing; however, both the calculation of exact probability and the execution of permutation tests are time-consuming. Faster methods for calculating exact probabilities and executing permutation tests are required.</p> <p>Methods</p> <p>We developed a set of computer programs for the parallel computation of accurate P-values in haplotype-based GWAS. Our program, ParaHaplo, is intended for workstation clusters using the Intel Message Passing Interface (MPI). We compared the performance of our algorithm to that of the regular permutation test on JPT and CHB of HapMap.</p> <p>Results</p> <p>ParaHaplo can detect smaller differences between 2 populations than SNP-based GWAS. We also found that parallel-computing techniques made ParaHaplo 100-fold faster than a non-parallel version of the program.</p> <p>Conclusion</p> <p>ParaHaplo is a useful tool in conducting haplotype-based GWAS. Since the data sizes of such projects continue to increase, the use of fast computations with parallel computing--such as that used in ParaHaplo--will become increasingly important. The executable binaries and program sources of ParaHaplo are available at the following address: <url>http://sourceforge.jp/projects/parallelgwas/?_sl=1</url></p

    OAZ-t/OAZ3 Is Essential for Rigid Connection of Sperm Tails to Heads in Mouse

    Get PDF
    Polyamines are known to play important roles in the proliferation and differentiation of many types of cells. Although considerable amounts of polyamines are synthesized and stored in the testes, their roles remain unknown. Ornithine decarboxylase antizymes (OAZs) control the intracellular concentration of polyamines in a feedback manner. OAZ1 and OAZ2 are expressed ubiquitously, whereas OAZ-t/OAZ3 is expressed specifically in germline cells during spermiogenesis. OAZ-t reportedly binds to ornithine decarboxylase (ODC) and inactivates ODC activity. In a prior study, polyamines were capable of inducing a frameshift at the frameshift sequence of OAZ-t mRNA, resulting in the translation of OAZ-t. To investigate the physiological role of OAZ-t, we generated OAZ-t–disrupted mutant mice. Homozygous OAZ-t mutant males were infertile, although the polyamine concentrations of epididymides and testes were normal in these mice, and females were fertile. Sperm were successfully recovered from the epididymides of the mutant mice, but the heads and tails of the sperm cells were easily separated in culture medium during incubation. Results indicated that OAZ-t is essential for the formation of a rigid junction between the head and tail during spermatogenesis. The detached tails and heads were alive, and most of the headless tails showed straight forward movement. Although the tailless sperm failed to acrosome-react, the heads were capable of fertilizing eggs via intracytoplasmic sperm injection. OAZ-t likely plays a key role in haploid germ cell differentiation via the local concentration of polyamines
    corecore