18 research outputs found

    Cosmic Star Formation Activity at z=2.2 Probed by H-alpha Emission Line Galaxies

    Full text link
    We present a pilot narrow-band survey of H-alpha emitters at z=2.2 in the Great Observatories Origins Deep Survey North (GOODS-N) field with MOIRCS instrument on the Subaru telescope. The survey reached a 3 sigma limiting magnitude of 23.6 (NB209) which corresponds to a 3 sigma limiting line flux of 2.5 x 10^-17 erg s^-1 cm^-2 over a 56 arcmnin^2 contiguous area (excluding a shallower area). From this survey, we have identified 11 H-alpha emitters and one AGN at z=2.2 on the basis of narrow-band excesses and photometric redshifts. We obtained spectra for seven new objects among them, including one AGN, and an emission line above 3 sigma is detected from all of them. We have estimated star formation rates (SFR) and stellar masses (M_star) for individual galaxies. The average SFR and M_star is 27.8M_solar yr^-1 and 4.0 x 10^10M_solar, respectivly. Their specific star formation rates are inversely correlated with their stellar masses. Fitting to a Schechter function yields the H-alpha luminosity function with log L = 42.82, log phi = -2.78 and alpha = -1.37. The average star formation rate density in the survey volume is estimated to be 0.31M_solar yr^-1Mpc^-3 according to the Kennicutt relation between H-alpha luminosity and star formation rate. We compare our H-alpha emitters at z=2.2 in GOODS-N with narrow-band line emitters in other field and clusters to see their time evolution and environmental dependence. We find that the star formation activity is reduced rapidly from z=2.5 to z=0.8 in the cluster environment, while it is only moderately changed in the field environment. This result suggests that the timescale of galaxy formation is different among different environments, and the star forming activities in high density regions eventually overtake those in lower density regions as a consequence of "galaxy formation bias" at high redshifts.Comment: Accepted for publication in PASJ Subaru Special Issue, 11 pages, 10 figure

    Evaluation of heat extraction through sapphire fibers for the GW observatory KAGRA

    Full text link
    Currently, the Japanese gravitational wave laser interferometer KAGRA is under construction in the Kamioka mine. As one main feature, it will employ sapphire mirrors operated at a temperature of 20K to reduce the impact from thermal noise. To reduce seismic noise, the mirrors will also be suspended from multi-stage pendulums. Thus the heat load deposited in the mirrors by absorption of the circulating laser light as well as heat load from thermal radiation will need to be extracted through the last suspension stage. This stage will consist of four thin sapphire fibers with larger heads necessary to connect the fibers to both the mirror and the upper stage. In this paper, we discuss heat conductivity measurements on different fiber candidates. While all fibers had a diameter of 1.6mm, different surface treatments and approaches to attach the heads were analyzed. Our measurements show that fibers fulfilling the basic KAGRA heat conductivity requirement of κ≥\kappa\geq 5000W/m/K at 20K are technologically feasible.Comment: 11 pages, 4 figure

    MOIRCS Deep Survey. VII: NIR Morphologies of Star-forming Galaxies at Redshift z~1

    Full text link
    We investigate rest-frame near-infrared (NIR) morphologies of a sample of 139 galaxies with M_{s} >= 1 x 10^{10} M_{sun} at z=0.8-1.2 in the GOODS-North field using our deep NIR imaging data (MOIRCS Deep Survey, MODS). We focus on Luminous Infrared Galaxies (LIRGs), which dominate high star formation rate (SFR) density at z~1, in the sample identified by cross-correlating with the Spitzer/MIPS 24um source catalog. We perform two-dimensional light profile fitting of the z~1 galaxies in the Ks-band (rest-frame J-band) with a single component Sersic model. We find that at z~1, ~90% of LIRGs have low Sersic indices (n<2.5, similar to disk-like galaxies) in the Ks-band, and those disk-like LIRGs consist of ~60% of the whole disk-like sample above M_{s} >= 3 x 10^{10} M_{sun}. The z~1 disk-like LIRGs are comparable or ~20% small at a maximum in size compared to local disk-like galaxies in the same stellar mass range. If we examine rest-frame UV-optical morphologies using the HST/ACS images, the rest-frame B-band sizes of the z~1 disk-like galaxies are comparable to those of the local disk-like galaxies as reported by previous studies on size evolution of disk-like galaxies in the rest-frame optical band. Measuring color gradients (galaxy sizes as a function of wavelength) of the z~1 and local disk-like galaxies, we find that the z~1 disk-like galaxies have 3-5 times steeper color gradient than the local ones. Our results indicate that (i) more than a half of relatively massive disk-like galaxies at z~1 are in violent star formation epochs observed as LIRGs, and also (ii) most of those LIRGs are constructing their fundamental disk structure vigorously. The high SFR density in the universe at z~1 may be dominated by such star formation in disk region in massive galaxies.Comment: 16 pages, 15 figures, accepted for publication in PASJ. Catalog data will be available at http://astr.tohoku.ac.jp/MODS/wiki/index.php soo

    Assembly of Massive Galaxies in a High-z Protocluster

    Get PDF
    We present the results of wide-field deep JHK imaging of the SSA22 field using MOIRCS instrument equipped with Subaru telescope. The observed field is 112 arcmin^2 in area, which covers the z=3.1 protocluster characterized by the overdensities of Ly Alpha emitters (LAEs) and Ly Alpha Blobs (LABs). The 5 sigma limiting magnitude is K_{AB} = 24.3. We extract the potential protocluster members from the K-selected sample by using the multi-band photometric-redshift selection as well as the simple color cut for distant red galaxies (DRGs; J-K_{AB}>1.4). The surface number density of DRGs in our observed fields shows clear excess compared with those in the blank fields, and the location of the densest area whose projected overdensity is twice the average coincides with the large-scale density peak of LAEs. We also found that K-band counterparts with z_{phot} = 3.1 are detected for 75% (15/20) of the LABs within their Ly Alpha halo, and the 40 % (8/20) of LABs have multiple components, which gives a direct evidence of the hierarchical multiple merging in galaxy formation. The stellar mass ofLABs correlates with their luminosity, isophotal area, and the Ly Alpha velocity widths, implying that the physical scale and the dynamical motion of Ly Alpha emission are closely related to their previous star-formation activities. Highly dust-obscured galaxies such as hyper extremely red objects (HEROs; J-K_{AB}>2.1) and plausible K-band counterparts of submillimeter sources are also populated in the high density region.Comment: 21pages, accepted for publication in Astrophysical Journa

    MOIRCS Deep Survey. I: DRG Number Counts

    Get PDF
    We use very deep near-infrared imaging data taken with Multi-Object InfraRed Camera and Spectrograph (MOIRCS) on the Subaru Telescope to investigate the number counts of Distant Red Galaxies (DRGs). We have observed a 4x7 arcmin^2 field in the Great Observatories Origins Deep Survey North (GOODS-N), and our data reach J=24.6 and K=23.2 (5sigma, Vega magnitude). The surface density of DRGs selected by J-K>2.3 is 2.35+-0.31 arcmin^-2 at K<22 and 3.54+-0.38 arcmin^-2 at K<23, respectively. These values are consistent with those in the GOODS-South and FIRES. Our deep and wide data suggest that the number counts of DRGs turn over at K~22, and the surface density of the faint DRGs with K>22 is smaller than that expected from the number counts at the brighter magnitude. The result indicates that while there are many bright galaxies at 2<z<4 with the relatively old stellar population and/or heavy dust extinction, the number of the faint galaxies with the similar red color is relatively small. Different behaviors of the number counts of the DRGs and bluer galaxies with 2<z_phot<4 at K>22 suggest that the mass-dependent color distribution, where most of low-mass galaxies are blue while more massive galaxies tend to have redder colors, had already been established at that epoch.Comment: 6 pages, 4 figures, accepted for publication in PAS

    Subaru/MOIRCS Near-Infrared Imaging in the Proto-Cluster Region at z=3.1

    Full text link
    We present the results of deep near-infrared imaging observations of the z=3.1 proto-cluster region in the SSA22a field taken by MOIRCS mounted on the Subaru Telescope. We observed a 21.7 arcmin^2 field to the depths of J=24.5, H=24.3, and K=23.9 (5 sigma). We examine the distribution of the K-selected galaxies at z~3 by using the simple color cut for distant red galaxies (DRGs) as well as the photometric-redshift selection technique. The marginal density excess of DRGs and the photo-z selected objects are found around the two most luminous Ly alpha blobs (LABs). We investigate the correlation between the K-selected objects and the LABs, and find that several galaxies with stellar mass M_* = 10^9-10^11 M_solar exist in vicinity of LABs, especially around the two most luminous ones. We also find that 7 of the 8 LABs in the field have plausible K_s-band counterparts and the sum of the stellar mass possibly associated with LABs correlates with the luminosity and surface brightness of them, which implies that the origin of Ly alpha emission may be closely correlated with their stellar mass or their previous star formation phenomena.Comment: 15 pages, 9 figures, accepted for publication in PASJ Vol.60, No.

    The Lifetime of Protoplanetary Disks in a Low-Metallicity Environment

    Full text link
    The extreme outer Galaxy (EOG), the region with a Galactic radius of more than 18 kpc, is known to have very low metallicity, about one-tenth that of the solar neighborhood. We obtained deep near-infrared (NIR) images of two very young (∼\sim0.5 Myr) star-forming clusters that are one of the most distant embedded clusters in the EOG. We find that in both clusters the fraction of stars with NIR excess, which originates from the circumstellar dust disk at radii of ≤\leq0.1 AU, is significantly lower than those in the solar neighborhood. Our results suggest that most stars forming in the low-metallicity environment experience disk dispersal at an earlier stage (<<1 Myr) than those forming in the solar metallicity environment (as much as ∼\sim5--6 Myr). Such rapid disk dispersal may make the formation of planets difficult, and the shorter disk lifetime with lower metallicity could contribute to the strong metallicity dependence of the well-known "planet-metallicity correlation", which states the probability of a star hosting a planet increases steeply with stellar metallicity. The reason for the rapid disk dispersal could be increase of the mass accretion rate and/or the effective far-ultraviolet photoevaporation due to the low extinction; however, another unknown mechanism for the EOG environment could be contributing significantly.Comment: 27 pages, 7 figures, Accepted for publication in The Astrophysical Journa
    corecore