37 research outputs found

    Status epilepticus enhances depotentiation after fully established LTP in an NMDAR-Dependent but GluN2B-independent manner

    Get PDF
    N-Methyl-D-aspartate (NMDA) receptor-dependent long-term potentiation (LTP) can be reversed by low-frequency stimulation (LFS) referred to as depotentiation (DP). We previously found GluN2B upregulated in CA1 neurons from post-status epilepticus (post-SE) tissue associated with an enhanced LTP. Here,we testedwhether LFS-inducedDP is also altered in pathologicalGluN2B upregulation. Although LTP was enhanced in post-SE tissue, LTP was significantly reversed in this tissue, but not in controls. We next tested the effect of the GluN2B subunit-specific blocker Ro 25-6981 (1 M) on LFS-DP. As expected, LFS had no effect on synaptic strength in the presence of the GluN2B blocker in control tissue. In marked contrast, LFS-DP was also attained in post-SE tissue indicating that GluN2B was obviously not involved in depotentiation. To test for NMDA receptor-dependence, we applied the NMDA receptor antagonist D-AP5 (50 M) prior to LFS and observed that DPwas abolished in both control and post- SE tissue confirming NMDA receptor involvement. These results indicate that control Schaffer collateral-CA1 synapses cannot be depotentiated after fully established LTP, but LFS was able to reverse LTP significantly in post-SE tissue. However, while LFS-DP clearly requiredNMDA receptor activation, GluN2B-containingNMDA receptors were not involved in this formof depotentiatio

    Status epilepticus enhances depotentiation after fully established LTP in an NMDAR-Dependent but GluN2B-independent manner

    Get PDF
    N-Methyl-D-aspartate (NMDA) receptor-dependent long-term potentiation (LTP) can be reversed by low-frequency stimulation (LFS) referred to as depotentiation (DP). We previously found GluN2B upregulated in CA1 neurons from post-status epilepticus (post-SE) tissue associated with an enhanced LTP. Here,we testedwhether LFS-inducedDP is also altered in pathologicalGluN2B upregulation. Although LTP was enhanced in post-SE tissue, LTP was significantly reversed in this tissue, but not in controls. We next tested the effect of the GluN2B subunit-specific blocker Ro 25-6981 (1 M) on LFS-DP. As expected, LFS had no effect on synaptic strength in the presence of the GluN2B blocker in control tissue. In marked contrast, LFS-DP was also attained in post-SE tissue indicating that GluN2B was obviously not involved in depotentiation. To test for NMDA receptor-dependence, we applied the NMDA receptor antagonist D-AP5 (50 M) prior to LFS and observed that DPwas abolished in both control and post- SE tissue confirming NMDA receptor involvement. These results indicate that control Schaffer collateral-CA1 synapses cannot be depotentiated after fully established LTP, but LFS was able to reverse LTP significantly in post-SE tissue. However, while LFS-DP clearly requiredNMDA receptor activation, GluN2B-containingNMDA receptors were not involved in this formof depotentiatio

    NMDA receptor-dependent metaplasticity by high-frequency magnetic stimulation

    Get PDF
    High-frequency magnetic stimulation (HFMS) can elicit N-methyl-D-aspartate (NMDA) receptor-dependent long-termpotentiation (LTP) at Schaffer collateral-CA1 pyramidal cell synapses. Here, we investigated the priming effect of HFMS on the subsequent magnitude of electrically induced LTP in the CA1 region of rat hippocampal slices using field excitatory postsynaptic potential (fEPSP) recordings. In control slices, electrical high-frequency conditioning stimulation (CS) could reliably induce LTP. In contrast, the same CS protocol resulted in long-term depression when HFMS was delivered to the slice 30 min prior to the electrical stimulation. HFMS-primingwas diminishedwhen applied in the presence of themetabotropic glutamate receptor antagonists (RS)- -methylserine-O-phosphate (MSOP) and (RS)--methyl-4-carboxyphenylglycine (MCPG).Moreover,whenHFMSwas delivered in the presence of the NMDA receptor-antagonist D-2-amino-5-phosphonovalerate (50 M), CS-induced electrical LTP was again as high as under control conditions in slices without priming. These results demonstrate that HFMS significantly reduced the propensity of subsequent electrical LTP and show that both metabotropic glutamate and NMDA receptor activation were involved in this form of HFMS-induced metaplasticity

    The Universal Non-Neuronal Nature of Parkinson's Disease: A Theory

    Get PDF
    Parkinson's disease (PD) is one of the most common neurodegenerative disorders, yet the etiology of the majority of its cases remains unknown. In this manuscript, relevant published evidence is interpreted and integrated into a comprehensive hypothesis on the nature, origin, and inter-cellular mode of propagation of sporadic PD. We propose to characterize sporadic PD as a pathological deviation in the global gene expression program of a cell: the PD expression-state, or PD-state for short. A universal cell-generic state, the PD-state deviation would be particularly damaging in a neuronal context, ultimately leading to neuron death and the ensuing observed clinical signs. We review why ageing associated accumulated damage caused by oxidative stress in mitochondria could be the trigger for a primordial cell to shift to the PD-state. We propose that hematopoietic cells could be the first to acquire the PD-state, at hematopoiesis, from the disruption in reactive oxygen species homeostasis that arises with age in the hematopoietic stem-cell niche. We argue that cellular ageing is nevertheless unlikely to explain the shift to the PD-state of all the subsequently affected cells in a patient, thus indicating the existence of a distinct mechanism of cellular propagation of the PD-state. We highlight recently published findings on the inter-cellular exchange of mitochondrial DNA and the ability of mitochondrial DNA to modulate the cellular global gene expression state and propose this could form the basis for the inter-cellular transmission of the PD-state

    The universal non-neuronal nature of parkinson's disease: a theory

    Get PDF
    Various recent developments of relevance to Parkinson's disease (PD) are discussed and integrated into a comprehensive hypothesis on the nature, origin and inter-cellular mode of propagation of late-onset sporadic PD. We propose to define sporadic PD as a characteristic pathological deviation in the global gene expression program of a cell: the PD expression-state, or PD-state for short. Although a universal cell-generic state, the PD-state deviation would be particularly damaging in a neuronal context, ultimately leading to neuron death and the ensuing observed clinical signs. We review why age accumulated damage caused by oxidative stress in mitochondria could be the trigger for a primordial cell to shift to the PD-state. We put forward hematopoietic cells could be the first to acquire the PD-state, at hematopoiesis, from the disruption in reactive oxygen species (ROS) homeostasis that arises with age in the hematopoietic stem-cell niche. We argue why, nonetheless, such a process is unlikely to explain the shift to the PD-state of all the subsequently affected cells in a patient, thus indicating the existence of a distinct mechanism of propagation of the PD-state. We highlight recent findings on the intercellular exchange of mitochondrial DNA and the ability of mitochondrial DNA to modulate the cellular global gene expression state and propose this could form the basis for the intercellular propagation of the PD-state

    NMDA receptor-dependent metaplasticity by high-frequency magnetic stimulation

    Get PDF
    High-frequency magnetic stimulation (HFMS) can elicit N-methyl-D-aspartate (NMDA) receptor-dependent long-termpotentiation (LTP) at Schaffer collateral-CA1 pyramidal cell synapses. Here, we investigated the priming effect of HFMS on the subsequent magnitude of electrically induced LTP in the CA1 region of rat hippocampal slices using field excitatory postsynaptic potential (fEPSP) recordings. In control slices, electrical high-frequency conditioning stimulation (CS) could reliably induce LTP. In contrast, the same CS protocol resulted in long-term depression when HFMS was delivered to the slice 30 min prior to the electrical stimulation. HFMS-primingwas diminishedwhen applied in the presence of themetabotropic glutamate receptor antagonists (RS)- -methylserine-O-phosphate (MSOP) and (RS)--methyl-4-carboxyphenylglycine (MCPG).Moreover,whenHFMSwas delivered in the presence of the NMDA receptor-antagonist D-2-amino-5-phosphonovalerate (50 M), CS-induced electrical LTP was again as high as under control conditions in slices without priming. These results demonstrate that HFMS significantly reduced the propensity of subsequent electrical LTP and show that both metabotropic glutamate and NMDA receptor activation were involved in this form of HFMS-induced metaplasticity

    Long-range and short-range tumor-stroma networks synergistically contribute to tumor-associated epilepsy

    Get PDF
    Epileptic seizures are frequently caused by brain tumors. Traditional anti-epileptic treatments do not acquire satisfactory responses. Preoperative and postoperative seizures seriously influence the quality of life of patients. Thus, tumor-associated epilepsy (TAE) is an important subject of the current research. The delineation of the etiology of epileptogenesis in patients with primary brain tumor may help to find the novel and effective drug targets for treating this disease. In this review, we describe the current status of treatment of TAE. More importantly, we focus on the factors that are involved in the functional connectivity between tumors and stromal cells. We propose that there exist two modes, namely, long-range and short-range modes, which likely trigger neuronal hyperexcitation and subsequent epileptic seizures. The long-range mode is referred to as factors released by tumors including glutamate and GABA, binding to the corresponding receptor on the cellular membrane and causing neuronal hyperactivity, while the short-range mode is considered to involve direct intracellular communication between tumor cells and stromas. Gap junctions and tunneling nanotube network are involved in cellular interconnections. Future investigations focused on those two modes may find a potential novel therapeutic target for treating TAE

    ZD7288 enhances long-term depression at early postnatal medial perforant path-granule cell synapses

    Get PDF
    Hyperpolarization-activated, cyclic nucleotide-gated nonselective (HCN) channels modulate both membrane potential and resistance and play a significant role in synaptic plasticity. We compared the influence of HCN channels on long-term depression (LTD) at the medial perforant path-granule cell synapse in early postnatal (P9–15) and adult (P30–60) rats. LTD was elicited in P9–15 slices using low-frequency stimulation (LFS, 900 pulses, 1Hz; 80 ± 4% of baseline). Application of the specific HCN channel blocker ZD7288 (10 μM) before LFS significantly enhanced LTD (62 ± 4%; P < 0.01), showing HCN channels restrain LTD induction. However, when ZD7288 was applied after LFS, LTD was similar to control values and significantly different from the values obtained with ZD7288 application before LFS (81 ± 5%; P < 0.01), indicating that HCN channels do not modulate LTD expression. LTD in slices from adult rats were only marginally lower compared to those in P9–15 slices (85 ± 6%), but bath application of ZD7288 prior to LFS resulted in the same amount of LTD (85 ± 5%). HCN channels in adult tissue hence lose their modulatory effect. In conclusion, we found that HCN channels at the medial perforant path-granule cell synapse compromise LFS-associated induction, but not expression of LTD in early postnatal, but not in adult, rats

    Functional Metaplasticity of Hippocampal Schaffer Collateral-CA1 Synapses Is Reversed in Chronically Epileptic Rats

    Get PDF
    Spatial learning and associating spatial information with individual experience are crucial for rodents and higher mammals. Hence, studying the cellular and molecular cascades involved in the key mechanism of information storage in the brain, synaptic plasticity, has led to enormous knowledge in this field. A major open question applies to the interdependence between synaptic plasticity and its behavioral correlates. In this context, it has become clear that behavioral aspects may impact subsequent synaptic plasticity, a phenomenon termed behavioral metaplasticity. Here, we trained control and pilocarpine-treated chronically epileptic rats of two different age groups (adolescent and adult) in a spatial memory task and subsequently tested long-term potentiation (LTP) in vitro at Schaffer collateral—CA1 synapses. As expected, memory acquisition in the behavioral task was significantly impaired both in pilocarpine-treated animals and in adult controls. Accordingly, these groups, without being tested in the behavioral training task, showed reduced CA1-LTP levels compared to untrained young controls. Spatial memory training significantly reduced subsequent CA1-LTP in vitro in the adolescent control group yet enhanced CA1-LTP in the adult pilocarpine-treated group. Such training in the adolescent pilocarpine-treated and adult control groups resulted in intermediate changes. Our study demonstrates age-dependent functional metaplasticity following a spatial memory training task and its reversal under pathological conditions

    Eag1 K +

    Get PDF
    Ether-à-go-go1 (Eag1, Kv10.1, KCNH1) K+ channel is a member of the voltage-gated K+ channel family mainly distributed in the central nervous system and cancer cells. Like other types of voltage-gated K+ channels, the EAG1 channels are regulated by a variety of endogenous signals including reactive oxygen species, rendering the EAG1 to be in the redox-regulated ion channel family. The role of EAG1 channels in tumor development and its therapeutic significance have been well established. Meanwhile, the importance of hEAG1 channels in the nervous system is now increasingly appreciated. The present review will focus on the recent progress on the channel regulation by endogenous signals and the potential functions of EAG1 channels in normal neuronal signaling as well as neurological diseases
    corecore