10 research outputs found

    Cardiovascular precision medicine – a pharmacogenomic perspective

    Get PDF
    Precision medicine envisages the integration of an individual’s clinical and biological features obtained from laboratory tests, imaging, high-throughput omics and health records, to drive a personalised approach to diagnosis and treatment with a higher chance of success. As only up to half of patients respond to medication prescribed following the current one-size-fits-all treatment strategy, the need for a more personalised approach is evident. One of the routes to transforming healthcare through precision medicine is pharmacogenomics (PGx). Around 95% of the population is estimated to carry one or more actionable pharmacogenetic variants and over 75% of adults over 50 years old are on a prescription with a known PGx association. Whilst there are compelling examples of pharmacogenomic implementation in clinical practice, the case for cardiovascular PGx is still evolving. In this review, we shall summarise the current status of PGx in cardiovascular diseases and look at the key enablers and barriers to PGx implementation in clinical practice

    Machine learning integration of multimodal data identifies key features of blood pressure regulation

    Get PDF
    Background: Association studies have identified several biomarkers for blood pressure and hypertension, but a thorough understanding of their mutual dependencies is lacking. By integrating two different high-throughput datasets, biochemical and dietary data, we aim to understand the multifactorial contributors of blood pressure (BP). Methods: We included 4,863 participants from TwinsUK with concurrent BP, metabolomics, genomics, biochemical measures, and dietary data. We used 5-fold cross-validation with the machine learning XGBoost algorithm to identify features of importance in context of one another in TwinsUK (80% training, 20% test). The features tested in TwinsUK were then probed using the same algorithm in an independent dataset of 2,807 individuals from the Qatari Biobank (QBB). Findings: Our model explained 39·2% [4·5%, MAE:11·32 mmHg (95%CI, +/- 0·65)] of the variance in systolic BP (SBP) in TwinsUK. Of the top 50 features, the most influential non-demographic variables were dihomo-linolenate, cis-4-decenoyl carnitine, lactate, chloride, urate, and creatinine along with dietary intakes of total, trans and saturated fat. We also highlight the incremental value of each included dimension. Furthermore, we replicated our model in the QBB [SBP variance explained = 45·2% (13·39%)] cohort and 30 of the top 50 features overlapped between cohorts. Interpretation: We show that an integrated analysis of omics, biochemical and dietary data improves our understanding of their in-between relationships and expands the range of potential biomarkers for blood pressure. Our results point to potentially key biological pathways to be prioritised for mechanistic studies. Funding: Chronic Disease Research Foundation, Medical Research Council, Wellcome Trust, Qatar Foundation

    Assessing machine learning for diagnostic classification of hypertension types identified by ambulatory blood pressure monitoring

    Get PDF
    Background: Inaccurate blood pressure classification results in inappropriate treatment. We tested if machine learning (ML), using routine clinical data, can serve as a reliable alternative to Ambulatory Blood Pressure Monitoring (ABPM) in classifying blood pressure status. Methods: This study employed a multi-centre approach involving three derivation cohorts from Glasgow, Gdańsk, and Birmingham, and a fourth independent evaluation cohort. ML models were trained using office BP, ABPM, and clinical, laboratory, and demographic data, collected from patients referred for hypertension assessment. Seven ML algorithms were trained to classify patients into five groups: Normal/Target, Hypertension-Masked, Normal/Target-White-Coat, Hypertension-White-Coat, and Hypertension. The 10-year cardiovascular outcomes and 27-year all-cause mortality risks were calculated for the ML-derived groups using the Cox proportional hazards model. Results: Overall XGBoost showed the highest AUROC of 0.85-0.88 across derivation cohorts, Glasgow (n=923; 43% females; age 50.7±16.3 years), Gdańsk (n=709; 46% females; age 54.4±13 years), and Birmingham (n=1,222; 56% females; age 55.7±14 years). But accuracy (0·57-0·72) and F1 scores (0·57-0·69) were low across the three patient cohorts. The evaluation cohort (n=6213, 51% females; age 51.2±10.8 years) indicated elevated 10-year risks of composite cardiovascular events in the Normal/Target-White-Coat and Hypertension-White-Coat groups, with heightened 27-year all-cause mortality observed in all groups except Hypertension-Masked, compared to the Normal/Target group. Conclusions: Machine learning has limited potential in accurate blood pressure classification when ABPM is unavailable. Larger studies including diverse patient groups and different resource settings are warranted

    Survey and evaluation of hypertension machine learning research

    Get PDF
    Background: Machine learning (ML) is pervasive in all fields of research, from automating tasks to complex decision‐making. However, applications in different specialities are variable and generally limited. Like other conditions, the number of studies employing ML in hypertension research is growing rapidly. In this study, we aimed to survey hypertension research using ML, evaluate the reporting quality, and identify barriers to ML's potential to transform hypertension care. Methods and Results: The Harmonious Understanding of Machine Learning Analytics Network survey questionnaire was applied to 63 hypertension‐related ML research articles published between January 2019 and September 2021. The most common research topics were blood pressure prediction (38%), hypertension (22%), cardiovascular outcomes (6%), blood pressure variability (5%), treatment response (5%), and real‐time blood pressure estimation (5%). The reporting quality of the articles was variable. Only 46% of articles described the study population or derivation cohort. Most articles (81%) reported at least 1 performance measure, but only 40% presented any measures of calibration. Compliance with ethics, patient privacy, and data security regulations were mentioned in 30 (48%) of the articles. Only 14% used geographically or temporally distinct validation data sets. Algorithmic bias was not addressed in any of the articles, with only 6 of them acknowledging risk of bias. Conclusions: Recent ML research on hypertension is limited to exploratory research and has significant shortcomings in reporting quality, model validation, and algorithmic bias. Our analysis identifies areas for improvement that will help pave the way for the realization of the potential of ML in hypertension and facilitate its adoption

    COVID-19 trajectories among 57 million adults in England: a cohort study using electronic health records

    Get PDF
    BACKGROUND: Updatable estimates of COVID-19 onset, progression, and trajectories underpin pandemic mitigation efforts. To identify and characterise disease trajectories, we aimed to define and validate ten COVID-19 phenotypes from nationwide linked electronic health records (EHR) using an extensible framework. METHODS: In this cohort study, we used eight linked National Health Service (NHS) datasets for people in England alive on Jan 23, 2020. Data on COVID-19 testing, vaccination, primary and secondary care records, and death registrations were collected until Nov 30, 2021. We defined ten COVID-19 phenotypes reflecting clinically relevant stages of disease severity and encompassing five categories: positive SARS-CoV-2 test, primary care diagnosis, hospital admission, ventilation modality (four phenotypes), and death (three phenotypes). We constructed patient trajectories illustrating transition frequency and duration between phenotypes. Analyses were stratified by pandemic waves and vaccination status. FINDINGS: Among 57 032 174 individuals included in the cohort, 13 990 423 COVID-19 events were identified in 7 244 925 individuals, equating to an infection rate of 12·7% during the study period. Of 7 244 925 individuals, 460 737 (6·4%) were admitted to hospital and 158 020 (2·2%) died. Of 460 737 individuals who were admitted to hospital, 48 847 (10·6%) were admitted to the intensive care unit (ICU), 69 090 (15·0%) received non-invasive ventilation, and 25 928 (5·6%) received invasive ventilation. Among 384 135 patients who were admitted to hospital but did not require ventilation, mortality was higher in wave 1 (23 485 [30·4%] of 77 202 patients) than wave 2 (44 220 [23·1%] of 191 528 patients), but remained unchanged for patients admitted to the ICU. Mortality was highest among patients who received ventilatory support outside of the ICU in wave 1 (2569 [50·7%] of 5063 patients). 15 486 (9·8%) of 158 020 COVID-19-related deaths occurred within 28 days of the first COVID-19 event without a COVID-19 diagnoses on the death certificate. 10 884 (6·9%) of 158 020 deaths were identified exclusively from mortality data with no previous COVID-19 phenotype recorded. We observed longer patient trajectories in wave 2 than wave 1. INTERPRETATION: Our analyses illustrate the wide spectrum of disease trajectories as shown by differences in incidence, survival, and clinical pathways. We have provided a modular analytical framework that can be used to monitor the impact of the pandemic and generate evidence of clinical and policy relevance using multiple EHR sources. FUNDING: British Heart Foundation Data Science Centre, led by Health Data Research UK

    A genomic deep field view of hypertension

    No full text
    No abstract available

    Establishing plausibility of cardiovascular adverse effects of immunotherapies using Mendelian randomisation

    Get PDF
    Immune checkpoint inhibitors (ICIs) and Janus kinase inhibitors (JAKis) have raised concerns over serious unexpected cardiovascular adverse events. The widespread pleiotropy in genome-wide association studies offers an opportunity to identify cardiovascular risks from in-development drugs to help inform appropriate trial design and pharmacovigilance strategies. This study uses the Mendelian randomization (MR) approach to study the causal effects of 9 cardiovascular risk factors on ischemic stroke risk both independently and by mediation, followed by an interrogation of the implicated expression quantitative trait loci (eQTLs) to determine if the enriched pathways can explain the adverse stroke events observed with ICI or JAKi treatment. Genetic predisposition to higher systolic blood pressure (SBP), diastolic blood pressure (DBP), body mass index (BMI), waist-to-hip ratio (WHR), low-density lipoprotein cholesterol (LDL), triglycerides (TG), type 2 diabetes (T2DM), and smoking index were associated with higher ischemic stroke risk. The associations of genetically predicted BMI, WHR, and TG on the outcome were attenuated after adjusting for genetically predicted T2DM [BMI: 53.15% mediated, 95% CI 17.21%–89.10%; WHR: 42.92% (4.17%–81.67%); TG: 72.05% (10.63%–133.46%)]. JAKis, programmed cell death protein 1 and programmed death ligand 1 inhibitors were implicated in the pathways enriched by the genes related to the instruments for each of SBP, DBP, WHR, T2DM, and LDL. Overall, MR mediation analyses support the role of T2DM in mediating the effects of BMI, WHR, and TG on ischemic stroke risk and follow-up pathway enrichment analysis highlights the utility of this approach in the early identification of potential harm from drugs

    Investigating the quality of machine learning research and reporting in hypertension

    No full text
    Objective: Artificial intelligence and machine learning (AI/ML) are increasingly being applied to big clinical data to tackle research questions that cannot be answered with traditional statistical methods. The field is still in its nascent stages and there is a paucity of guidelines for conducting and reporting AI/ML research in hypertension. The objective was to apply the HUMANE checklist to survey the present landscape of AI/ML in hypertension to inform the development of hypertension-specific guidelines and recommendations. Design and method: The HUMANE checklist was developed by global clinical and AI/ML experts through the Delphi method. It assesses the quality of medical AI/ML articles based on whether they cover subjects expected in any peer-reviewed, clinical or AI/ML research publication. A cooping review was carried out to identify articles presenting original research in AI/ML and hypertension published in 2019–2021. Two independent reviewers applied the checklist to each article and in the case of discordance, the response was adjudicated by an AI/ML expert. Results were analysed to assess compliance with the survey (% of papers satisfying checklist requirements). Results: A total of 63 manuscripts was reviewed. A summary of results is shown in Figure 1. Highest compliance was seen for items relating to general article presentation, with compliance ranging from 68% to 98% (description of statistical analysis methods and background context, respectively). Lowest compliance was seen with checklist items relating to clinical research and AI/ML methods. 44% of reviewed articles described the demographics of their dataset and 48% stated their inclusion/exclusion criteria. Nonetheless, datasets were deemed appropriate for investigative aims in 93% of articles. 30% of manuscripts reported their calibration measures, while 73% stated their performance metrics. Internal validation was carried out in 75% of studies, but external validity was assessed in only 14% of cases. Algorithmic bias was addressed in 11% of papers. Conclusions: Application of AI/ML methods in hypertension research is growing, but the majority of current work has major shortfalls in reporting quality, model validation and algorithmic bias. Our study identifies areas of improvement to enable the full realisation of the potential of AI/ML in hypertension
    corecore