32 research outputs found
Impact of Growth Habit and Architecture Genes on Adaptation and Performance of Bread Wheat
In bread wheat (Triticum aestivum L.), flowering time and plant stature are important phenological and agronomic traits for adaptation, yield potential, and yield stability. Timely flowering is critical for production, and the flowering window has to be late enough to avoid early season frosts but early enough to avoid late season stresses such as heat and terminal drought. Flowering time is controlled mainly by vernalization, photoperiod response, and earliness per se genes, which can be exploited to fine‐tune growth and tailor flowering time for the production of desirable wheat cultivars. Tailoring flowering time could help reduce preharvest sprouting problems by escaping high temperatures and late season rainfall, which promote preharvest sprouting, hence yield loss. Concisely summarizing available information on flowering time and identifying research gaps could provide direction for future research. This chapter, therefore, discusses: (i) the progress made in discovering genes involved and the impact of their extensive allelic variation on flowering time, (ii) the potential benefits of tailoring wheat\u27s flowering time to improve yield, and (iii) the benefits of introgressing genes for other complimentary traits, such as semidwarf and preharvest sprouting resistance on advanced lines to achieve higher yield, thus, sustainable food security
Progress and Challenges in Improving Nutritional Quality in Wheat
Wheat (Triticum aestivum L.) houses a wide range of nutritional components such as iron (Fe), zinc (Zn), vitamins and phenolic acids, which are important for plant metabolism and human health. The bioavailability of these nutritional components is low due to their interaction with other components and low quantity in the endosperm. Biofortification is a more sustainable approach that could improve the bioavailability of essential nutritional components. Substantial progress has been made to improve nutritional quality through the application of conventional, technological and transgenic approaches. This has led to the discovery, cloning and introgression of the Gpc-B1 gene; the invention of online databases with minimally characterized biosynthetic, metabolic pathways and biological processes of wheat-related species; the establishment of genetic variation in grain Fe and Zn content and the biofortification of wheat with Zn by the HarvestPlus organization. Nonetheless, the biofortification of wheat with micronutrients and phenolic acids is still a challenge due to incomplete understanding of the wheat genome, biosynthesis and translocation of selected nutritional components into different wheat grain compartments. There is a need to integrate selected omics technologies to obtain a holistic overview and manipulate key biological processes involved in the remobilization and biosynthesis of nutritional components into desired wheat grain compartments
Breeding wheat for drought tolerance: Progress and technologies
AbstractRecurrent drought associated with climate change is among the principal constraints to global productivity of wheat (Triticum aestivum (L.) and T. turgidum (L.)). Numerous efforts to mitigate drought through breeding resilient varieties are underway across the world. Progress is, however, hampered because drought tolerance is a complex trait that is controlled by many genes and its full expression is affected by the environment. Furthermore, wheat has a structurally intricate and large genome. Consequently, breeding for drought tolerance requires the integration of various knowledge systems and methodologies from multiple disciplines in plant sciences. This review summarizes the progress made in dry land wheat improvement, advances in knowledge, complementary methodologies, and perspectives towards breeding for drought tolerance in the crop to create a coherent overview. Phenotypic, biochemical and genomics-assisted selection methodologies are discussed as leading research components used to exploit genetic variation. Advances in phenomic and genomic technologies are highlighted as options to circumvent existing bottlenecks in phenotypic and genomic selection, and gene transfer. The prospects of further integration of these technologies with other omics technologies are also provided
Integration of Next-generation Sequencing Technologies with Comparative Genomics in Cereals
Cereals are the major sources of calories worldwide. Their production should be high to achieve food security, despite the projected increase in global population. Genomics research may enhance cereal productivity. Genomics immensely benefits from robust next-generation sequencing (NGS) techniques, which produce vast amounts of sequence data in a time and cost-efficient way. Research has demonstrated that gene sequences among closely related species that share common ancestry have remained well conserved over millions of years of evolution. Comparative genomics allows for comparison of genome sequences across different species, with the implication that genomes with large sizes can be investigated using closely related species with smaller genomes. This offers prospects of studying genes in a single species and, in turn, gaining information on their functions in other related species. Comparative genomics is expected to provide invaluable information on the control of gene function in complex cereal genomes, and also in designing molecular markers across related species. This chapter discusses advances in sequencing technologies, their application in cereal genomics and their potential contribution to the understanding of the relationships between the different cereal genomes and their phenotypes
Nested association mapping of stem rust resistance in wheat using genotyping by sequencing
We combined the recently developed genotyping by sequencing (GBS) method with joint mapping (also known as nested association mapping) to dissect and understand the genetic architecture controlling stem rust resistance in wheat (Triticum aestivum). Ten stem rust resistant wheat varieties were crossed to the susceptible line LMPG-6 to generate F6 recombinant inbred lines. The recombinant inbred line populations were phenotyped in Kenya, South Africa, and St. Paul, Minnesota, USA. By joint mapping of the 10 populations, we identified 59 minor and medium-effect QTL (explained phenotypic variance range of 1%- 20%) on 20 chromosomes that contributed towards adult plant resistance to North American Pgt races as well as the highly virulent Ug99 race group. Fifteen of the 59 QTL were detected in multiple environments. No epistatic relationship was detected among the QTL. While these numerous small- to medium-effect QTL are shared among the families, the founder parents were found to have different allelic effects for the QTL. Fourteen QTL identified by joint mapping were also detected in single-population mapping. As these QTL were mapped using SNP markers with known locations on the physical chromosomes, the genomic regions identified with QTL could be explored more in depth to discover candidate genes for stem rust resistance. The use of GBS-derived de novo SNPs in mapping resistance to stem rust shown in this study could be used as a model to conduct similar markertrait association studies in other plant species.This is an open access article, free of all copiright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication
Importance of bovine mastitis in Africa
Bovine mastitis is an important animal production disease that affects the dairy industry globally. Studies have estimated the prevalence of this disease in approximately 30% of African countries, with the highest prevalence found in Ethiopia. This is despite the wide cattle distribution in Africa, and the largest number of dairy farms and herds in countries such as South Africa, Kenya and Uganda. Furthermore, the estimated financial losses due to direct and indirect impacts of bovine mastitis are lacking in this continent. Therefore, intensive research efforts will help determine the continent-wide economic impacts and advance careful monitoring of disease prevalence and epidemiology. Here, published cases supporting the occurrence and importance of bovine mastitis in certain regions of Africa are outlined.The National Research Foundation (NRF) of South Africa [SFP14070774252]https://www.cambridge.org/core/journals/animal-health-research-reviews2017-12-30hj2017Production Animal Studie
Irrigation wheat production constraints and opportunities in South Africa
South Africa currently faces a wheat production crisis, suggesting that current policies, research and development projects may not be well aligned to farmer priorities. Through exploratory research, which included field inspections and farmer and researcher interviews, we identified the major constraints to irrigation wheat yield and explored opportunities for improving the yield and farmer profits. The dominant constraint to yield was identified as the low market price for grain, which makes farmers reluctant to invest in inputs for increasing wheat yield. Poor cultivar choice, cereal-based monocropping, the high cost of irrigation, inadequate irrigation water, low crop stands, soil acidity, no-till practices and red-billed quelea (Quelea quelea) birds are negatively impacting yields. Most importantly, we highlight a misalignment between current research efforts and farmer priorities. Recommendations for corrective measures necessary to improve yield and farmer profits are provided. This new knowledge will be useful to policymakers and researchers for better orienting investments in research and development projects aimed at addressing the current wheat production crisis in the country.
Significance:
We highlight a misalignment between current research efforts and farmer priorities in the wheat sector, and provide new knowledge for better orienting investments in research and development projects aimed at addressing the current wheat production crisis
Physiological responses of irrigated wheat (Triticum aestivum L.) genotypes to water stress
The recent drought in South Africa has reduced the production of both dryland and irrigated wheat. This study evaluated physiological traits of irrigated wheat genotypes in response to water stress (WS) imposed at different growth stages. A 8 × 2 × 3 [(genotypes) × (water treatmets; stresses and non-stressed) × (growth stages; tillering, flowering and grain filling)] factorial experiment based on a randomised complete block design with three replicates was conducetd. In general, the rate of photosynthesis was unaffected by WS except for genotypes LM43 at tillering and LM98 at grain filling. Stomatal conductance (SC) and transpiration rate (Tr) followed the same treand except for genotype LM35 which reduced its SC and Tr significantly at grain filling. Instantaneous waster use efficiency (IWUE) of genotype LM35 and LM57 was unaffected (p > 0.05) by WS at tillering but at flowering stage it was affected. However, at grain filling IWUE was affected (p < 0.05) in genotypes LM35, ML57, LM79 and LM 98. The relative water content was unaffected at tillering except for LM35 and LM47 genotypes whereas at flowering LM57, ML79, LM83 and LM98 were affected. These results indicate some degree of drought tolerance of these genotypes at different growth stages
Breeding for silicon-use efficiency, protein content and drought tolerance in bread wheat (Triticum aestivum L.): a review
The production and quality of wheat are affected by abiotic constraints including water stress and soil nutrient deficiencies. It is imperative to develop drought-tolerant wheat varieties with high yield potential and enhanced grain protein content for food security. Silicon (Si) is important for plant growth and development but its role in abiotic stress tolerance has been overlooked in breeding programs. Identifying the underlying functional genes controlling drought tolerance, protein content and grain yield is essential for wheat improvement, especially under drought stress. Silicon uptake is conditioned by several Si transporter genes such as Lsi1, Lsi2 and Lsi6 and aquaporins, which facilitate transport of silicon and water between cells. The objectives of this review are to examine the role of Si in improving plant nutrition and drought tolerance, and to appraise the genetic control of Si uptake and breeding methods for improving Si uptake for drought adaptation and improved grain yield and quality. The review highlights the limited progress made in breeding for drought tolerance in wheat, especially in sub-Sahara Africa where the challenge is prevalent. Limited understanding of the genetic basis for Si uptake and physiology contribute to the limited progress in its exploitation in wheat improvement programs