34 research outputs found

    Regulation of dendritic spine morphology by an NMDA receptor-associated Rho GTPase-activating protein, p250GAP

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66364/1/j.1471-4159.2008.05335.x.pd

    Cbl-b Positively Regulates Btk-mediated Activation of Phospholipase C-γ2 in B Cells

    Get PDF
    Genetic studies have revealed that Cbl-b plays a negative role in the antigen receptor–mediated proliferation of lymphocytes. However, we show that Cbl-b–deficient DT40 B cells display reduced phospholipase C (PLC)-γ2 activation and Ca2+ mobilization upon B cell receptor (BCR) stimulation. In addition, the overexpression of Cbl-b in WEHI-231 mouse B cells resulted in the augmentation of BCR-induced Ca2+ mobilization. Cbl-b interacted with PLC-γ2 and helped the association of PLC-γ2 with Bruton's tyrosine kinase (Btk), as well as B cell linker protein (BLNK). Cbl-b was indispensable for Btk-dependent sustained increase in intracellular Ca2+. Both NH2-terminal tyrosine kinase-binding domain and COOH-terminal half region of Cbl-b were essential for its association with PLC-γ2 and the regulation of Ca2+ mobilization. These results demonstrate that Cbl-b positively regulates BCR-mediated Ca2+ signaling, most likely by influencing the Btk/BLNK/PLC-γ2 complex formation

    NMDAR2B tyrosine phosphorylation regulates anxiety-like behavior and CRF expression in the amygdala

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Anxiety disorders are a highly prevalent and disabling class of psychiatric disorders. There is growing evidence implicating the glutamate system in the pathophysiology and treatment of anxiety disorders, though the molecular mechanism by which the glutamate system regulates anxiety-like behavior remains unclear.</p> <p>Results</p> <p>In this study, we provide evidence suggesting that tyrosine phosphorylation of the NMDA receptor, an ionotropic glutamate receptor, contributes to anxiety-like behavior. The GluN2B subunit of the NMDA receptor is tyrosine-phosphorylated: Tyr-1472 is the major phosphorylation site. Homozygous knock-in mice that express a Tyr-1472-Phe mutant of GluN2B, which prevents phosphorylation of this site, show enhanced anxiety-like behavior in the elevated plus-maze test. Expression of corticotropin-releasing factor (CRF), which is important for the regulation of anxiety-like behavior, is increased in the amygdala of the knock-in mice. Furthermore, injection of CRF receptor antagonist attenuated the enhanced anxiety-like behavior of the knock-in mice. We also show that elevated plus-maze exposure simultaneously induced de-phosphorylation of Tyr-1472 and increased CRF expression.</p> <p>Conclusions</p> <p>These data suggest that Tyr-1472 phosphorylation on GluN2B is important for anxiety-like behavior by negative regulation of CRF expression in the amygdala.</p

    Moyamoya disease patient mutations in the RING domain of RNF213 reduce its ubiquitin ligase activity and enhance NFκB activation and apoptosis in an AAA+ domain-dependent manner

    Get PDF
    Moyamoya disease (MMD) is a cerebrovascular disease characterized by progressive occlusion of the internal carotid arteries. Genetic studies originally identified RNF213 as an MMD susceptibility gene that encodes a large 591 kDa protein with a functional RING domain and dual AAA+ ATPase domains. As the functions of RNF213 and its relationship to MMD onset are unknown, we set out to characterize the ubiquitin ligase activity of RNF213, and the effects of MMD patient mutations on these activities and on other cellular processes. In vitro ubiquitination assays, using the RNF213 RING domain, identified Ubc13/Uev1A as a key ubiquitin conjugating enzyme that together generate K63-linked polyubiquitin chains. However, nearly all MMD patient mutations in the RING domain greatly reduced this activity. When full-length proteins were overexpressed in HEK293T cells, patient mutations that abolished the ubiquitin ligase activities conversely enhanced nuclear factor κB (NFκB) activation and induced apoptosis accompanied with Caspase-3 activation. These induced activities were dependent on the RNF213 AAA+ domain. Our results suggest that the NFκB- and apoptosis-inducing functions of RNF213 may be negatively regulated by its ubiquitin ligase activity and that disruption of this regulation could contribute towards MMD onset

    FcɛRI-mediated mast cell degranulation requires calcium-independent microtubule-dependent translocation of granules to the plasma membrane

    Get PDF
    The aggregation of high affinity IgE receptors (Fcɛ receptor I [FcɛRI]) on mast cells is potent stimulus for the release of inflammatory and allergic mediators from cytoplasmic granules. However, the molecular mechanism of degranulation has not yet been established. It is still unclear how FcɛRI-mediated signal transduction ultimately regulates the reorganization of the cytoskeleton and how these events lead to degranulation. Here, we show that FcɛRI stimulation triggers the formation of microtubules in a manner independent of calcium. Drugs affecting microtubule dynamics effectively suppressed the FcɛRI-mediated translocation of granules to the plasma membrane and degranulation. Furthermore, the translocation of granules to the plasma membrane occurred in a calcium-independent manner, but the release of mediators and granule–plasma membrane fusion were completely dependent on calcium. Thus, the degranulation process can be dissected into two events: the calcium-independent microtubule-dependent translocation of granules to the plasma membrane and calcium-dependent membrane fusion and exocytosis. Finally, we show that the Fyn/Gab2/RhoA (but not Lyn/SLP-76) signaling pathway plays a critical role in the calcium-independent microtubule-dependent pathway

    Involvement of NMDAR2A tyrosine phosphorylation in depression‐related behaviour

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/102200/1/embj2009300-sup-0001.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/102200/2/embj2009300.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/102200/3/embj2009300-sup-0003.pd

    DOK7 gene therapy enhances motor activity and life span in ALS model mice

    No full text
    Abstract Amyotrophic lateral sclerosis (ALS) is a progressive, multifactorial motor neurodegenerative disease with severe muscle atrophy. The glutamate release inhibitor riluzole is the only medication approved by the FDA, and prolongs patient life span by a few months, testifying to a strong need for new treatment strategies. In ALS, motor neuron degeneration first becomes evident at the motor nerve terminals in neuromuscular junctions (NMJs), the cholinergic synapse between motor neuron and skeletal muscle; degeneration then progresses proximally, implicating the NMJ as a therapeutic target. We previously demonstrated that activation of muscle‐specific kinase MuSK by the cytoplasmic protein Dok‐7 is essential for NMJ formation, and forced expression of Dok‐7 in muscle activates MuSK and enlarges NMJs. Here, we show that therapeutic administration of an adeno‐associated virus vector encoding the human DOK7 gene suppressed motor nerve terminal degeneration at NMJs together with muscle atrophy in the SOD1‐G93A ALS mouse model. Ultimately, we show that DOK7 gene therapy enhanced motor activity and life span in ALS model mice
    corecore