101 research outputs found

    Quantum Hall effect at cleaved InSb surfaces and low-temperature annealing effect

    Full text link
    We have performed low-temperature in-plane magnetotransport measurements on two-dimensional electron systems induced by deposition of Ag at {\it in situ} cleaved surfaces of {\it p}-type InSb. The quantum Hall effect was observed even at low magnetic fields around 2 T. The surface electron density and the electron mobility exhibit strong dependence on the Ag-coverage and the annealing temperature in the range of 15-40 K. The annealing effect suggests that the surface morphology strongly affects the properties of the two-dimensional electron systems.Comment: 3 pages, 2 figure

    Fabrication of Apatite Films on Ti Substrates of Simple and Complicated Shapes by Using Stable Solutions of Ca Complex

    Get PDF
    Titanium (Ti) is known as the most popular implant materials. In addition, the coating technology of hydroxyapatite (HA) or carbonate-containing apatite (CA) on Ti substrates having various shapes has been interested from the viewpoint for improvement of implant’s osteoconductivity. The fabrication of apatite coatings on metallic substrates has been investigated by several techniques. We developed novel wet processes using some stable solutions in which Ca complexes and phosphate ion dissolve simultaneously. The CA film can be deposited homogeneously on substrates, Ti plate and Ti fiber mesh, using a stable precursor solution involving a Ca2+ complex of ethylenediaminetetraacetic acid (EDTA). Another stable aqueous solution was prepared by the addition of phosphoric acid to a calcium hydrogen carbonate solution. The solution is adequate to be sprayed facilely onto a Ti plate by using an airbrush. It is important that the fabricated apatite films by the spray process have the characteristic network structures. The materials with these CA films are nontoxic and have the excellent bonding ability to bone tissues

    Evidence for Two-Dimensional Spin-Glass Ordering in Submonolayer Fe Films on Cleaved InAs Surfaces

    Full text link
    Magnetotransport measurements have been performed on two-dimensional electron gases formed at InAs(110) surfaces covered with a submonolayer of Fe. Hysteresis in the magnetoresistance, a difference in remanent magnetoresistance between zero-field-cooling procedures and field-cooling procedures, and logarithmic time-dependent relaxation after magnetic field sweep are clearly observed at 1.7 K for a coverage of 0.42 monolayer. These features are associated with spin-glass ordering in the Fe film.Comment: 4 pages, 3 figure

    Alkali-metal-induced Fermi level and two dimensional electrons at cleaved InAs(110) surfaces

    Full text link
    Low-temperature Hall measurements have been performed on two-dimensional electron gases (2DEGs) induced by deposition of Cs or Na on in situ cleaved surfaces of p-type InAs. The surface donor level, at which the Fermi energy of the 2DEG is pinned, is calculated from the observed saturation surface electron density using a surface potential determined self-consistently. The results are compared to those of previous photoelectron spectroscopy measurements.Comment: 3 pages, 4 figure

    Novel protein extraction approach using micro-sized chamber for evaluation of proteins eluted from formalin-fixed paraffin-embedded tissue sections

    Get PDF
    We describe a novel antigen-retrieval method using a micro-sized chamber for mass spectrometry (MS) analysis to identify proteins that are preferentially eluted from formalin-fixed paraffin-embedded (FFPE) samples. This approach revealed that heat-induced antigen retrieval (HIAR) from an FFPE sample fixed on a glass slide not only improves protein identification, but also facilitates preferential elution of protein subsets corresponding to the properties of antigen-retrieval buffers. Our approach may contribute to an understanding of the mechanism of HIAR

    Phospholipase C-β4 Is Essential for the Progression of the Normal Sleep Sequence and Ultradian Body Temperature Rhythms in Mice

    Get PDF
    BACKGROUND: THE SLEEP SEQUENCE: i) non-REM sleep, ii) REM sleep, and iii) wakefulness, is stable and widely preserved in mammals, but the underlying mechanisms are unknown. It has been shown that this sequence is disrupted by sudden REM sleep onset during active wakefulness (i.e., narcolepsy) in orexin-deficient mutant animals. Phospholipase C (PLC) mediates the signaling of numerous metabotropic receptors, including orexin receptors. Among the several PLC subtypes, the beta4 subtype is uniquely localized in the geniculate nucleus of thalamus which is hypothesized to have a critical role in the transition and maintenance of sleep stages. In fact, we have reported irregular theta wave frequency during REM sleep in PLC-beta4-deficient mutant (PLC-beta4-/-) mice. Daily behavioral phenotypes and metabotropic receptors involved have not been analyzed in detail in PLC-beta4-/- mice, however. METHODOLOGY/PRINCIPAL FINDINGS: Therefore, we analyzed 24-h sleep electroencephalogram in PLC-beta4-/- mice. PLC-beta4-/- mice exhibited normal non-REM sleep both during the day and nighttime. PLC-beta4-/- mice, however, exhibited increased REM sleep during the night, their active period. Also, their sleep was fragmented with unusual wake-to-REM sleep transitions, both during the day and nighttime. In addition, PLC-beta4-/- mice reduced ultradian body temperature rhythms and elevated body temperatures during the daytime, but had normal homeothermal response to acute shifts in ambient temperatures (22 degrees C-4 degrees C). Within the most likely brain areas to produce these behavioral phenotypes, we found that, not orexin, but group-1 metabotropic glutamate receptor (mGluR)-mediated Ca(2+) mobilization was significantly reduced in the dorsal lateral geniculate nucleus (LGNd) of PLC-beta4-/- mice. Voltage clamp recordings revealed that group-1 mGluR-mediated currents in LGNd relay neurons (inward in wild-type mice) were outward in PLC-beta4-/- mice. CONCLUSIONS/SIGNIFICANCE: These lines of evidence indicate that impaired LGNd relay, possibly mediated via group-1 mGluR, may underlie irregular sleep sequences and ultradian body temperature rhythms in PLC-beta4-/- mice

    Let-7 MicroRNA Family Is Selectively Secreted into the Extracellular Environment via Exosomes in a Metastatic Gastric Cancer Cell Line

    Get PDF
    Background: Exosomes play a major role in cell-to-cell communication, targeting cells to transfer exosomal molecules including proteins, mRNAs, and microRNAs (miRNAs) by an endocytosis-like pathway. miRNAs are small noncoding RNA molecules on average 22 nucleotides in length that regulate numerous biological processes including cancer pathogenesis and mediate gene downregulation by targeting mRNAs to induce RNA degradation and/or interfering with translation. Recent reports imply that miRNAs can be stably detected in circulating plasma and serum since miRNAs are packaged by exosomes to be protected from RNA degradation. Thus, profiling exosomal miRNAs are in need to clarify intercellular signaling and discover a novel disease marker as well. Methodology/Principal Findings: Exosomes were isolated from cultured cancer cell lines and their quality was validated by analyses of transmission electron microscopy and western blotting. One of the cell lines tested, a metastatic gastric cancer cell line, AZ-P7a, showed the highest RNA yield in the released exosomes and distinctive shape in morphology. In addition, RNAs were isolated from cells and culture media, and profiles of these three miRNA fractions were obtained using microarray analysis. By comparing signal intensities of microarray data and the following validation using RT-PCR analysis, we found that let-7 miRNA family was abundant in both the intracellular and extracellular fractions from AZ-P7a cells, while low metastatic AZ-521, the parental cell line of AZ-P7a, as well as other cancer cell lines showed no such propensity. Conclusions/Significance: The enrichment of let-7 miRNA family in the extracellular fractions, particularly, in the exosome
    corecore