4,577 research outputs found

    Fabrication of Embedded Microvalve on PMMA Microfluidic Devices through Surface Functionalization

    Get PDF
    The integration of a PDMS membrane within orthogonally placed PMMA microfluidic channels enables the pneumatic actuation of valves within bonded PMMA-PDMS-PMMA multilayer devices. Here, surface functionalization of PMMA substrates via acid catalyzed hydrolysis and air plasma corona treatment were investigated as possible techniques to permanently bond PMMA microfluidic channels to PDMS surfaces. FTIR and water contact angle analysis of functionalized PMMA substrates showed that air plasma corona treatment was most effective in inducing PMMA hydrophilicity. Subsequent fluidic tests showed that air plasma modified and bonded PMMA multilayer devices could withstand fluid pressure at an operational flow rate of 9 mircoliters/min. The pneumatic actuation of the embedded PDMS membrane was observed through optical microscopy and an electrical resistance based technique. PDMS membrane actuation occurred at pneumatic pressures of as low as 10kPa and complete valving occurred at 14kPa for 100 micrometers x 100 micrometers channel cross-sections.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/handle/2042/16838

    Fast algorithms for large scale generalized distance weighted discrimination

    Full text link
    High dimension low sample size statistical analysis is important in a wide range of applications. In such situations, the highly appealing discrimination method, support vector machine, can be improved to alleviate data piling at the margin. This leads naturally to the development of distance weighted discrimination (DWD), which can be modeled as a second-order cone programming problem and solved by interior-point methods when the scale (in sample size and feature dimension) of the data is moderate. Here, we design a scalable and robust algorithm for solving large scale generalized DWD problems. Numerical experiments on real data sets from the UCI repository demonstrate that our algorithm is highly efficient in solving large scale problems, and sometimes even more efficient than the highly optimized LIBLINEAR and LIBSVM for solving the corresponding SVM problems

    AC voltage regulation of a bidirectional high-frequency link converter using a deadbeat controller

    Get PDF
    This paper presents a digital controller for AC voltage regulation of a bidirectional high-frequency link (BHFL) inverter using Deadbeat control. The proposed controller consists of inner current loop, outer voltage loop and a feed-forward controller, which imposes a gain scheduling effect according to the reference signal to compensate the steady-state error of the system. The main property of the proposed controller is that the current- and the voltage-loop controllers have the same structure, and use the same sampling period. This simplifies the design and implementation processes. To improve the overall performance of the system, additional disturbance decoupling networks are employed. This takes into account the model discretization effect. Therefore, accurate disturbance decoupling can be achieved, and the system robustness towards load variations is increased. To avoid transformer saturation due to low frequency voltage envelopes, an equalized pulse width modulation (PWM) technique has been introduced. The proposed controller has been realized using the DS1104 digital signal processor (DSP) from dSPACE. Its performances have been tested on a one kVA prototype inverter. Experimental results showed that the proposed controller has very fast dynamic and good steady-state responses even under highly nonlinear loads
    corecore