6 research outputs found

    Identification of missense mutations in genes related to cancer pathways in glioma

    Get PDF
    Glioma is the most common primary brain tumour of the central nervous system. Many genetic alterations and mutations have been identified in glioma using various approaches. We performed DNA sequencing on the tumours of 16 patients with Grade I, II, III and IV glioma. The AmpliSeq Cancer Primers Pool was used to generate the amplicons. The targeted-ion sphere particles were prepared using the Ion One Touch and Ion Enrichment systems. DNA sequencing was performed on the Ion Torrent Personal Genome Machine (PGM) and the data were analysed using the Torrent Suite Software. In total, 14 mutations were identified in the following genes: KDR (Q472H), MLH1 (V384D), MET (N375S), PTPN11 (E69K), BRAF (V600E), TP53 (D149E, E154K, V157F), IDH1 (R132H), PIK3CA (H1047R), CSF1R (c1061_1061 ins A), KIT (M541L), PTEN (c1373_1373 del A) and PDGFRA (E556V). In addition, there were four novel mutations identified; TP53 (E154K, and D149E), CSF1R (c1061_1061 ins A) and PDGFRA (E556V). The pathogenicity prediction showed that only three mutations were pathogenic: PTPN11 (E69K), BRAF (V600E) and Tp53 (E154K). These mutations result in changes of the proteins’ structure and could affect their functions. Pathway analyses suggested that these genes are closely related to the pathogenesis of GBM through several pathways such as proliferation and invasion, metabolism and angiogenesis. In conclusion, PGM in combination with the AmpliSeq Cancer Panel could be utilised as a potential molecular diagnostic tool not only for glioma but also for other cancers

    CASE REPORT - EXTRADURAL SPINAL SCHWANNOMA IN 12 YEAR OLD CHILD : A CASE REPORT

    No full text
    We report a case of a 12 year old girl who presented with cord compression. Imaging studies demonstrated an extradural spinal tumour in the lower thoracic and upper lumbar levels. Histology confirmed the diagnosis of schwannoma while associated findings suggested the possibility of Neurofibromatosis Type I

    Delayed Traumatic Intracranial Haemorrhage and Progressive Traumatic Brain Injury in a Major Referral Centre Based in a Developing Country

    No full text
    A repeat Computer Tomographic (CT) brain after 24–48 hours from the 1st scanning is usually practiced in most hospitals in South East Asia where intracranial pressure monitoring (ICP) is routinely not done. This interval for repeat CT would be shortened if there was a deterioration in Glasgow Coma Scale (GCS). Most of the time the prognosis of any intervention may be too late especially in hospitals with high patient-to-doctor ratio causing high mortality and morbidity. The purpose of this study was to determine the important predictors for early detection of Delayed Traumatic Intracranial Haemorrhage (DTICH) and Progressive Traumatic Brain Injury (PTBI) before deterioration of GCS occurred, as well as the most ideal timing of repeated CT brain for patients admitted in Malaysian hospitals. A total of 81 patients were included in this study over a period of six months. The CT scan brain was studied by comparing the first and second CT brain to diagnose the presence of DTICH/PTBI. The predictors tested were categorised into patient factors, CT brain findings and laboratory investigations. The mean age was 33.1 ± 15.7 years with a male preponderance of 6.36:1. Among them, 81.5% were patients from road traffic accidents with Glasgow Coma Scale ranging from 4 – 15 (median of 12) upon admission. The mean time interval delay between trauma and first CT brain was 179.8 ± 121.3 minutes for the PTBI group. The DTICH group, 9.9% of the patients were found to have new intracranial clots. Significant predictors detected were different referral hospitals (p=0.02), total GCS status (p=0.026), motor component of GCS (p=0.043), haemoglobin level (p<0.001), platelet count (p=0.011) and time interval between trauma and first CT brain (p=0.022). In the PTBI group, 42.0% of the patients were found to have new changes (new clot occurrence, old clot expansion and oedema) in the repeat CT brain. Univariate statistical analysis revealed that age (p=0.03), race (p=0.035), types of admission (p=0.024), GCS status (p=0.02), pupillary changes (p=0.014), number of intracranial lesion (p=0.004), haemoglobin level (p=0.038), prothrombin time (p=0.016) as the best predictors of early detection of changes. Multiple logistics regression analysis indicated that age, severity, GCS status (motor component) and GCS during admission were significantly associated with second CT scan with changes. This study showed that 9.9% of the total patients seen in the period of study had DTICH and 42% had PTBI. In the early period after traumatic head injury, the initial CT brain did not reveal the full extent of haemorrhagic injury and associated cerebral oedema. Different referral hospitals of different trauma level, GCS status, motor component of the GCS, haemoglobin level, platelet count and time interval between trauma and the first CT brain were the significant predictors for DTICH. Whereas the key determinants of PTBI were age, race, types of admission, GCS status, pupillary changes, number of intracranial bleed, haemoglobin level, prothrombin time and of course time interval between trauma and first CT brain. Any patients who had traumatic head injury in hospitals with no protocol of repeat CT scan or intracranial pressure monitoring especially in developing countries are advised to have to repeat CT brain at the appropriate quickest time

    Safety and Use of MLC601/MLC901 (NeuroAiDTM) in Primary Intracerebral Hemorrhage: A Cohort Study from the NeuroAiD Safe Treatment Registry

    No full text
    Background: MLC601/MLC901 (NeuroAiD&trade;) is a combination of natural products shown to be safe and to aid neurological recovery after brain injuries, especially ischemic stroke. Few studies have investigated NeuroAiD in primary intracerebral hemorrhage (ICH). The NeuroAiD Safe Treatment (NeST) Registry explores NeuroAiD use in the real-world setting. This cohort study aimed to assess its use and safety in ICH. Methods: The online NeST Registry of subjects with ICH given NeuroAiD prospectively collected clinical data at baseline and monthly visits (V) 1 to 3. Outcome measures included compliance, side effects, Glasgow Coma Scale (GCS), National Institutes of Health Stroke Scale (NIHSS), modified Rankin Scale (mRS), and Short Orientation-Memory-Concentration Test (SOMCT). Results: Sixty-six subjects were included. NeuroAiD was well-tolerated with fair compliance over three months. Two non-serious side effects were reported. Mean scores significantly improved on all outcome scales. The proportion of subjects with favorable outcomes significantly improved from baseline to V3: NIHSS 0&ndash;4, from 12% to 59% (p &lt; 0.0001); GCS 13&ndash;15, from 64% to 88% (p = 0.007); mRS 0&ndash;1, from 9% to 37% (p = 0.004); and SOMCT score 0&ndash;8, from 44% to 68% (p = 0.029). Conclusions: NeuroAiD in the real-world setting was safe and showed potential for a sustained positive effect on neurological recovery after ICH

    Mitochondrial DNA Mutations in Grade II and III Glioma Cell Lines Are Associated with Significant Mitochondrial Dysfunction and Higher Oxidative Stress

    No full text
    The role of mitochondria in tumorigenesis has regained much attention as it could dysregulate cellular energetics, oxidative stress and apoptosis. However, the role of mitochondria in different grade gliomasis still unknown. This study aimed to identify mitochondrial DNA (mtDNA) sequence variations that could possibly affect the mitochondrial functions and also the oxidative stress status. Three different grades of human glioma cell lines and a normal human astrocyte cell line were cultured in-vitro and tested for oxidative stress biomarkers. Relative oxidative stress level, mitochondria activity, and mitochondrial mass were determined by live cell imaging with confocal laser scanning microscope using CM-H2DCFDA, MitoTracker Green, and MitoTracker Orange stains. The entire mitochondrial genome was sequenced using the AffymetrixGeneChip Human Mitochondrial Resequencing Array 2.0. The mitochondrial sequence variations were subjected to phylogenetic haplogroup assessment and pathogenicity of the mutations were predicted using pMUT and PolyPhen2. The Grade II astrocytoma cells showed increased oxidative stress wherea high level of 8-OHdG and oxidative stress indicator were observed. Simultaneously, Grade II and III glioma cells showed relatively poor mitochondria functions and increased number of mutations in the coding region of the mtDNA which could be due to high levels of oxidative stress in these cells. These non-synonymous mtDNA sequence variations were predicted to be pathogenic and could possibly lead to protein dysfunction, leading to oxidative phosphorylation (OXPHOS) impairment, mitochondria dysfunction and could create a vicious cycle of oxidative stress. The Grade IV cells had no missense mutation but preserved intact mitochondria and excellent antioxidant defense mechanisms thus ensuring better survival. In conclusion, Grade II and III glioma cells demonstrated coding region mtDNA mutations, leading to mitochondrial dysfunction and higher oxidative stress
    corecore