7 research outputs found

    Fatigue behavior of as-built L-PBF A357.0 parts

    Get PDF
    Laser-based powder bed fusion (L-PBF) is nowadays the preeminent additive manufacturing (AM) technique to produce metal parts. Nonetheless, relatively few metal powders are currently available for industrial L-PBF, especially if aluminum-based feedstocks are involved. In order to fill the existing gap, A357.0 (also known as A357 or A13570) powders are here processed by L-PBF and, for the first time, the fatigue behavior is investigated in the as-built state to verify the net-shaping potentiality of AM. Both the low-cycle and high-cycle fatigue areas are analyzed to draw the complete Wohler diagram. The infinite lifetime limit is set to 2 7 106stress cycles and the staircase method is applied to calculate a mean fatigue strength of 60 MPa. This value is slightly lower but still comparable to the published data for AlSi10Mg parts manufactured by L-PBF, even if the A357.0 samples considered here have not received any post-processing treatment

    Design for Additive Manufacturing and for Machining in the Automotive Field

    No full text
    High cost, unpredictable defects and out-of-tolerance rejections in final parts are preventing the complete deployment of Laser-based Powder Bed Fusion (LPBF) on an industrial scale. Repeatability, speed and right-first-time manufacturing require synergistic design approaches. In addition, post-build finishing operations of LPBF parts are the object of increasing attention to avoid the risk of bottlenecks in the machining step. An aluminum component for automotive application was redesigned through topology optimization and Design for Additive Manufacturing. Simulation of the build process allowed to choose the orientation and the support location for potential lowest deformation and residual stresses. Design for Finishing was adopted in order to facilitate the machining operations after additive construction. The optical dimensional check proved a good correspondence with the tolerances predicted by process simulation and confirmed part acceptability. A cost and time comparison versus CNC alone attested to the convenience of LPBF unless single parts had to be produced

    Beads for Cell Immobilization: Comparison of Alternative Additive Manufacturing Techniques

    No full text
    The attachment or entrapment of microbial cells and enzymes are promising solutions for various industrial applications. When the traps are beads, they are dispersed in a fluidized bed in a vessel where a pump guarantees fresh liquid inflow and waste outflow without washing out the cells. Scientific papers report numerous types of cell entrapment, but most of their applications remain at the laboratory level. In the present research, rigid polymer beads were manufactured by two different additive manufacturing (AM) techniques in order to verify the economy, reusability, and stability of the traps, with a view toward a straightforward industrial application. The proposed solutions allowed for overcoming some of the drawbacks of traditional manufacturing solutions, such as the limited mechanical stability of gel traps, and they guaranteed the possibility of producing parts of constant quality with purposely designed exchange surfaces, which are unfeasible when using conventional processes. AM proved to be a viable manufacturing solution for beads with complex shapes of two different size ranges. A deep insight into the production and characteristics of beads manufactured by AM is provided. The paper provides biotechnologists with a manufacturing perspective, and the results can be directly applied to transit from the laboratory to the industrial scale

    Influence of Trabecular Geometry on Scaffold Mechanical Behavior and MG-63 Cell Viability

    Get PDF
    In a scaffold-based approach for bone tissue regeneration, the control over morphometry allows for balancing scaffold biomechanical performances. In this experimental work, trabecular geometry was obtained by a generative design process, and scaffolds were manufactured by vat photopolymerization with 60% (P60), 70% (P70) and 80% (P80) total porosity. The mechanical and biological performances of the produced scaffolds were investigated, and the results were correlated with morphometric parameters, aiming to investigate the influence of trabecular geometry on the elastic modulus, the ultimate compressive strength of scaffolds and MG-63 human osteosarcoma cell viability. The results showed that P60 trabecular geometry allows for matching the mechanical requirements of human mandibular trabecular bone. From the statistical analysis, a general trend can be inferred, suggesting strut thickness, the degree of anisotropy, connectivity density and specific surface as the main morphometric parameters influencing the biomechanical behavior of trabecular scaffolds, in the perspective of tissue engineering applications

    Effect of Three Different Finishing Processes on the Surface Morphology and Fatigue Life of A357.0 Parts Produced by Laser‐Based Powder Bed Fusion

    No full text
    A357.0 parts are processed by laser-based powder bed fusion and surface finished via plastic media blasting, ceramic sand blasting, and laser shock processing. The morphological analysis proves that plastic media blasting causes the most effective peak removal, the most efficient decrease in valley depth, and the greatest reduction in surface roughness. All the surface finishing processes enhance the fatigue life, however ceramic sand blasting bring about the greatest increase in the value of σmax for an infinite fatigue life limit of 2106 cycles. The experimental results suggest therefore that the infinite fatigue life value is more sensitive to the residual stress state engendered by ceramic sand blasting than to the reduction in surface roughness. Breakthrough cracks start at the interface between crushed or modified surface particles and the underlying macro-surface. However, at a distance of a few hundred microns from the crack initiation point, the fracture surface morphology become cellular for all the specimens
    corecore