1,170 research outputs found
Image Analysis of Intractable Epilepsy:18F-FDG PET Scan of the Cortical Dysplasia
開始ページ、終了ページ: 冊子体のページ付
Bulk and surface-sensitive high-resolution photoemission study of Mott-Hubbard systems SrVO and CaVO
We study the electronic structure of Mott-Hubbard systems SrVO and
CaVO with bulk and surface-sensitive high-resolution photoemission
spectroscopy (PES), using a VUV laser, synchrotron radiation and a discharge
lamp ( = 7 - 21 eV). A systematic suppression of the density of states
(DOS) within 0.2 eV of the Fermi level () is found on decreasing
photon energy i.e. on increasing bulk sensitivity. The coherent band in
SrVO and CaVO is shown to consist of surface and bulk derived
features, separated in energy. The stronger distortion on surface of CaVO
compared to SrVO leads to higher surface metallicity in the coherent DOS
at , consistent with recent theory.Comment: 4 pages 5 figures (including 2 auxiliary figures); A complete
analysis of the spectra based on the surface and bulk analysis shows in
auxiliary figures Fig. A1 and A
Lung: t(6;12)(q22;q14.1) LRIG3/ROS1 in lung adenocarcinoma
Short communication on t(6;12)(q22;q14.1) LRIG3/ROS1 in lung adenocarcinoma with data on clinics
Recursiveness, Switching, and Fluctuations in a Replicating Catalytic Network
A protocell model consisting of mutually catalyzing molecules is studied in
order to investigate how chemical compositions are transferred recursively
through cell divisions under replication errors. Depending on the path rate,
the numbers of molecules and species, three phases are found: fast switching
state without recursive production, recursive production, and itinerancy
between the above two states. The number distributions of the molecules in the
recursive states are shown to be log-normal except for those species that form
a core hypercycle, and are explained with the help of a heuristic argument.Comment: 4 pages (with 7 figures (6 color)), submitted to PR
Orbital-dependent modifications of electronic structure across magneto-structural transition in BaFe2As2
Laser angle-resolved photoemission spectroscopy (ARPES) is employed to
investigate the temperature (T) dependence of the electronic structure in
BaFe2As2 across the magneto-structural transition at TN ~ 140 K. A drastic
transformation in Fermi surface (FS) shape across TN is observed, as expected
by first-principles band calculations. Polarization-dependent ARPES and band
calculations consistently indicate that the observed FSs at kz ~ pi in the
low-T antiferromagnetic (AF) state are dominated by the Fe3dzx orbital, leading
to the two-fold electronic structure. These results indicate that
magneto-structural transition in BaFe2As2 accompanies orbital-dependent
modifications in the electronic structure.Comment: 13 pages, 4 figures. accepted by Physical Review Letter
Doping-dependence of nodal quasiparticle properties in high- cuprates studied by laser-excited angle-resolved photoemission spectroscopy
We investigate the doping dependent low energy, low temperature ( = 5 K)
properties of nodal quasiparticles in the d-wave superconductor
BiSrCaCuO (Bi2212). By utilizing ultrahigh
resolution laser-excited angle-resolved photoemission spectroscopy, we obtain
precise band dispersions near , mean free paths and scattering rates
() of quasiparticles. For optimally and overdoped, we obtain very sharp
quasiparticle peaks of 8 meV and 6 meV full-width at half-maximum,
respectively, in accord with terahertz conductivity. For all doping levels, we
find the energy-dependence of , while () shows a monotonic increase from overdoping to underdoping. The doping
dependence suggests the role of electronic inhomogeneity on the nodal
quasiparticle scattering at low temperature (5 K \lsim 0.07T_{\rm c}),
pronounced in the underdoped region
Transitions Induced by the Discreteness of Molecules in a Small Autocatalytic System
Autocatalytic reaction system with a small number of molecules is studied
numerically by stochastic particle simulations. A novel state due to
fluctuation and discreteness in molecular numbers is found, characterized as
extinction of molecule species alternately in the autocatalytic reaction loop.
Phase transition to this state with the change of the system size and flow is
studied, while a single-molecule switch of the molecule distributions is
reported. Relevance of the results to intracellular processes are briefly
discussed.Comment: 5 pages, 4 figure
- …