3,732 research outputs found
X-ray Emission from Haloes of Simulated Disc Galaxies
Bolometric and 0.2-2 keV X-ray luminosities of the hot gas haloes of
simulated disc galaxies have been calculated at redshift z=0. The TreeSPH
simulations are fully cosmological and the sample of 44 disc galaxies span a
range in characteristic circular speeds of V_c = 130-325 km/s. The galaxies
have been obtained in simulations with a considerable range of physical
parameters, varying the baryonic fraction, the gas metallicity, the
meta-galactic UV field, the cosmology, the dark matter type, and also the
numerical resolution. The models are found to be in agreement with the (few)
relevant X-ray observations available at present. The amount of hot gas in the
haloes is also consistent with constraints from pulsar dispersion measures in
the Milky Way. Forthcoming XMM and Chandra observations should enable much more
stringent tests and provide constraints on the physical parameters. We find
that simple cooling flow models over-predict X-ray luminosities by up to two
orders of magnitude for high (but still realistic) cooling efficiencies
relative to the models presented here. Our results display a clear trend that
increasing cooling efficiency leads to decreasing X-ray luminosities at z=0.
The reason is found to be that increased cooling efficiency leads to a
decreased fraction of hot gas relative to total baryonic mass inside of the
virial radius at present. At gas metal abundances of a third solar this hot gas
fraction becomes as low as just a few percent. We also find that most of the
X-ray emission comes from the inner parts (inner about 20 kpc) of the hot
galactic haloes. Finally, we find for realistic choices of the physical
parameters that disc galaxy haloes possibly were more than one order of
magnitude brighter in soft X-ray emission at z=1, than at present.Comment: 8 pages, 7 figures, MNRAS LaTeX forma
Defining the ancestral replication fork trap in Tus-dependent bacteria
Casey Toft used in silico and in vitro approaches to refine the fork trap architecture in Tus-dependent bacteria and its potential application in Immuno-PCR diagnostics. He discovered a ubiquitous 'ancestral' replication fork trap architecture consisting of only two Terminator sites at odds with the well-established and complex Escherichia coli system
Trace ideals for Fourier integral operators with non-smooth symbols II
We consider Fourier integral operators with symbols in modulation spaces and
non-smooth phase functions whose second orders of derivatives belong to certain
types of modulation space. We establish continuity and Schatten-von Neumann
properties of such operators when acting on modulation spaces.Comment: 25 page
Thirty-fold: Extreme gravitational lensing of a quiescent galaxy at
We report the discovery of eMACSJ1341-QG-1, a quiescent galaxy at
located behind the massive galaxy cluster eMACSJ1341.92442 (). The
system was identified as a gravitationally lensed triple image in Hubble Space
Telescope images obtained as part of a snapshot survey of the most X-ray
luminous galaxy clusters at and spectroscopically confirmed in
ground-based follow-up observations with the ESO/X-Shooter spectrograph. From
the constraints provided by the triple image, we derive a first, crude model of
the mass distribution of the cluster lens, which predicts a gravitational
amplification of a factor of 30 for the primary image and a factor of
6 for the remaining two images of the source, making eMACSJ1341-QG-1 by
far the most strongly amplified quiescent galaxy discovered to date. Our
discovery underlines the power of SNAPshot observations of massive, X-ray
selected galaxy clusters for lensing-assisted studies of faint background
populations
A calculus of Fourier integral operators with inhomogeneous phase functions on R (d)
A calculus of Fourier integral operators with inhomogeneous phase functions on R
- …