4 research outputs found

    Homocysteine and D-dimer levels and
multilayer computed tomography for diagnosing pulmonary artery thromboembolism

    No full text
    Aim: D-dimer reportedly plays a leading role in diagnosing pulmonary embolism. Additionally, homocysteine is an established risk factor for atherosclerosis, vascular disease, and thrombosis. Herein, the authors aimed to evaluate the diagnostic significance of D-dimer and homocysteine levels, together with multi-detector computed tomography (CT) in suspected pulmonary embolism.Methods: The authors examined patients suffering from conditions and complaints that are typical of pulmonary artery thromboembolism (PATE), such as chest pain, haemoptysis, dyspnoea, tachycardia, arterial hypotension, and signs of vein thrombosis in the inferior limbs. In these patients, PATE was found in different localizations with varying rates of severity. D-dimer levels were measured in patients with suspected PATE using enzyme-linked immunosorbent assays. Homocysteine levels were determined by an enzymatic method. All patients were examined to evaluate the presence of pulmonary embolism by multi-detector CT angiopulmonography.Results: Changes in homocysteine levels can be considered a separate independent factor for PATE diagnostics. The correlation between multi-detector CT angiopulmonography, elevated D-dimer levels, and concomitant hyperhomocysteinemia can be used not only for diagnostics but also for the assessment of the effectiveness of PATE treatment.Conclusion: Multi-detector CT angiopulmonography, D-dimer levels and related hyperhomocysteinemia can serve as significant laboratory markers in the diagnosis and treatment efficacy of PATE

    Rationale, design, and baseline characteristics in Evaluation of LIXisenatide in Acute Coronary Syndrome, a long-term cardiovascular end point trial of lixisenatide versus placebo

    No full text
    BACKGROUND: Cardiovascular (CV) disease is the leading cause of morbidity and mortality in patients with type 2 diabetes mellitus (T2DM). Furthermore, patients with T2DM and acute coronary syndrome (ACS) have a particularly high risk of CV events. The glucagon-like peptide 1 receptor agonist, lixisenatide, improves glycemia, but its effects on CV events have not been thoroughly evaluated. METHODS: ELIXA (www.clinicaltrials.gov no. NCT01147250) is a randomized, double-blind, placebo-controlled, parallel-group, multicenter study of lixisenatide in patients with T2DM and a recent ACS event. The primary aim is to evaluate the effects of lixisenatide on CV morbidity and mortality in a population at high CV risk. The primary efficacy end point is a composite of time to CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for unstable angina. Data are systematically collected for safety outcomes, including hypoglycemia, pancreatitis, and malignancy. RESULTS: Enrollment began in July 2010 and ended in August 2013; 6,068 patients from 49 countries were randomized. Of these, 69% are men and 75% are white; at baseline, the mean ± SD age was 60.3 ± 9.7 years, body mass index was 30.2 ± 5.7 kg/m(2), and duration of T2DM was 9.3 ± 8.2 years. The qualifying ACS was a myocardial infarction in 83% and unstable angina in 17%. The study will continue until the positive adjudication of the protocol-specified number of primary CV events. CONCLUSION: ELIXA will be the first trial to report the safety and efficacy of a glucagon-like peptide 1 receptor agonist in people with T2DM and high CV event risk
    corecore