65 research outputs found

    Expression of amphetamine sensitization is associated with recruitment of a reactive neuronal population in the nucleus accumbens core

    Get PDF
    Rationale: Repeated exposure to psychostimulant drugs causes a long-lasting increase in the psychomotor and reinforcing effects of these drugs and an array of neuroadaptations. One such alteration is a hypersensitivity of striatal activity such that a low dose of amphetamine in sensitized animals produces dorsal striatal activation patterns similar to acute treatment with a high dose of amphetamine. Objectives: To extend previous findings of striatal hypersensitivity with behavioral observations and with cellular activity in the nucleus accumbens and prefrontal cortex in sensitized animals. Materials and methods: Rats treated acutely with 0, 1, 2.5, or 5 mg/kg i.p. amphetamine and sensitized rats challenged with 1 mg/kg i.p. amphetamine were scored for stereotypy, rearing, and grooming, and locomotor activity recorded. c-fos positive nuclei were quantified in the nucleus accumbens and prefrontal cortex after expression of sensitization with 1 mg/kg i.p. amphetamine. Results: Intense stereotypy was seen in animals treated acutely with 5 mg/kg amphetamine, but not in the sensitized group treated with 1 mg/kg amphetamine. The c-fos response to amphetamine in the accumbens core was augmented in amphetamine-pretreated animals with a shift in the distribution of optical density, while no effect of sensitization was seen in the nucleus accumbens shell or prefrontal cortex. Conclusions A lack of stereotypy in the sensitized group indicates a dissociation of behavioral responses to amphetamine and striatal immediate-early gene activation patterns. The increase in c-fos positive nuclei and shift in the distribution of optical density observed in the nucleus accumbens core suggests recruitment of a new population of neurons during expression of sensitization

    Individual Variations in Maternal Care Early in Life Correlate with Later Life Decision-Making and c-Fos Expression in Prefrontal Subregions of Rats

    Get PDF
    Early life adversity affects hypothalamus-pituitary-adrenal axis activity, alters cognitive functioning and in humans is thought to increase the vulnerability to psychopathology–e.g. depression, anxiety and schizophrenia- later in life. Here we investigated whether subtle natural variations among individual rat pups in the amount of maternal care received, i.e. differences in the amount of licking and grooming (LG), correlate with anxiety and prefrontal cortex-dependent behavior in young adulthood. Therefore, we examined the correlation between LG received during the first postnatal week and later behavior in the elevated plus maze and in decision-making processes using a rodent version of the Iowa Gambling Task (rIGT). In our cohort of male and female animals a high degree of LG correlated with less anxiety in the elevated plus maze and more advantageous choices during the last 10 trials of the rIGT. In tissue collected 2 hrs after completion of the task, the correlation between LG and c-fos expression (a marker of neuronal activity) was established in structures important for IGT performance. Negative correlations existed between rIGT performance and c-fos expression in the lateral orbitofrontal cortex, prelimbic cortex, infralimbic cortex and insular cortex. The insular cortex correlations between c-fos expression and decision-making performance depended on LG background; this was also true for the lateral orbitofrontal cortex in female rats. Dendritic complexity of insular or infralimbic pyramidal neurons did not or weakly correlate with LG background. We conclude that natural variations in maternal care received by pups may significantly contribute to later-life decision-making and activity of underlying brain structures

    Effect of Methamphetamine Exposure on Expression of Calcium Binding Proteins in Rat Frontal Cortex and Hippocampus

    No full text
    Methamphetamine (METH) is a psychostimulant drug with potent effects on the central nervous system that can cause psychotic symptoms similar to those of schizophrenia. Specific alterations in GABAergic neuronal markers have been reported in schizophrenia and animal models of psychotic illness. The aim of this study was to determine whether there are changes in subpopulations of GABAergic neurons, defined by the presence of calcium binding proteins (CBPs), in animal models of METH abuse. Rats received acute (Binge) doses of 4 × 6 mg/kg, a chronic escalating dose regime (0.1–4 mg/kg over 14 days) or a combination of the two and were compared with a vehicle-administered control group. Brains were taken and sections of frontal cortex (Cg1) and hippocampus (dentate gyrus and CA1-3 regions) underwent immunostaining for three CBPs [parvalbumin (PV), calbindin (CB), and calretinin (CR)]. Significant decreases in PV-immunoreactive (IR) neurons in each METH group and all regions were observed. Smaller METH-induced deficits in CB–IR cells were observed, reaching significance primarily following chronic METH regimes, while CR–IR was significantly reduced only in frontal cortex following chronic administration. These results suggest that METH regimes in rats can induce selective deficits in GABAergic neuronal subtypes similar to those seen in schizophrenia and may underlie the psychosis and/or cognitive impairment that can occur in METH abuse and dependence
    • …
    corecore