77 research outputs found

    Regulatory T Cell Induction during Plasmodium chabaudi Infection Modifies the Clinical Course of Experimental Autoimmune Encephalomyelitis

    Get PDF
    BACKGROUND: Experimental autoimmune encephalomyelitis (EAE) is used as an animal model for human multiple sclerosis (MS), which is an inflammatory demyelinating autoimmune disease of the central nervous system characterized by activation of Th1 and/or Th17 cells. Human autoimmune diseases can be either exacerbated or suppressed by infectious agents. Recent studies have shown that regulatory T cells play a crucial role in the escape mechanism of Plasmodium spp. both in humans and in experimental models. These cells suppress the Th1 response against the parasite and prevent its elimination. Regulatory T cells have been largely associated with protection or amelioration in several autoimmune diseases, mainly by their capacity to suppress proinflammatory response. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we verified that CD4(+)CD25(+) regulatory T cells (T regs) generated during malaria infection (6 days after EAE induction) interfere with the evolution of EAE. We observed a positive correlation between the reduction of EAE clinical symptoms and an increase of parasitemia levels. Suppression of the disease was also accompanied by a decrease in the expression of IL-17 and IFN-γ and increases in the expression of IL-10 and TGF-β1 relative to EAE control mice. The adoptive transfer of CD4(+)CD25(+) cells from P. chabaudi-infected mice reduced the clinical evolution of EAE, confirming the role of these T regs. CONCLUSIONS/SIGNIFICANCE: These data corroborate previous findings showing that infections interfere with the prevalence and evolution of autoimmune diseases by inducing regulatory T cells, which regulate EAE in an apparently non-specific manner

    Extreme CD8 T Cell Requirements for Anti-Malarial Liver-Stage Immunity following Immunization with Radiation Attenuated Sporozoites

    Get PDF
    Radiation-attenuated Plasmodium sporozoites (RAS) are the only vaccine shown to induce sterilizing protection against malaria in both humans and rodents. Importantly, these “whole-parasite” vaccines are currently under evaluation in human clinical trials. Studies with inbred mice reveal that RAS-induced CD8 T cells targeting liver-stage parasites are critical for protection. However, the paucity of defined T cell epitopes for these parasites has precluded precise understanding of the specific characteristics of RAS-induced protective CD8 T cell responses. Thus, it is not known whether quantitative or qualitative differences in RAS-induced CD8 T cell responses underlie the relative resistance or susceptibility of immune inbred mice to sporozoite challenge. Moreover, whether extraordinarily large CD8 T cell responses are generated and required for protection following RAS immunization, as has been described for CD8 T cell responses following single-antigen subunit vaccination, remains unknown. Here, we used surrogate T cell activation markers to identify and track whole-parasite, RAS-vaccine-induced effector and memory CD8 T cell responses. Our data show that the differential susceptibility of RAS-immune inbred mouse strains to Plasmodium berghei or P. yoelii sporozoite challenge does not result from host- or parasite-specific decreases in the CD8 T cell response. Moreover, the surrogate activation marker approach allowed us for the first time to evaluate CD8 T cell responses and protective immunity following RAS-immunization in outbred hosts. Importantly, we show that compared to a protective subunit vaccine that elicits a CD8 T cell response to a single epitope, diversifying the targeted antigens through whole-parasite RAS immunization only minimally, if at all, reduced the numerical requirements for memory CD8 T cell-mediated protection. Thus, our studies reveal that extremely high frequencies of RAS-induced memory CD8 T cells are required, but may not suffice, for sterilizing anti-Plasmodial immunity. These data provide new insights into protective CD8 T cell responses elicited by RAS-immunization in genetically diverse hosts, information with relevance to developing attenuated whole-parasite vaccines

    Parasite-Dependent Expansion of TNF Receptor II–Positive Regulatory T Cells with Enhanced Suppressive Activity in Adults with Severe Malaria

    Get PDF
    Severe Plasmodium falciparum malaria is a major cause of global mortality, yet the immunological factors underlying progression to severe disease remain unclear. CD4+CD25+ regulatory T cells (Treg cells) are associated with impaired T cell control of Plasmodium spp infection. We investigated the relationship between Treg cells, parasite biomass, and P. falciparum malaria disease severity in adults living in a malaria-endemic region of Indonesia. CD4+CD25+Foxp3+CD127lo Treg cells were significantly elevated in patients with uncomplicated (UM; n = 17) and severe malaria (SM; n = 16) relative to exposed asymptomatic controls (AC; n = 10). In patients with SM, Treg cell frequency correlated positively with parasitemia (r = 0.79, p = 0.0003) and total parasite biomass (r = 0.87, p<0.001), both major determinants for the development of severe and fatal malaria, and Treg cells were significantly increased in hyperparasitemia. There was a further significant correlation between Treg cell frequency and plasma concentrations of soluble tumor necrosis factor receptor II (TNFRII) in SM. A subset of TNFRII+ Treg cells with high expression of Foxp3 was increased in severe relative to uncomplicated malaria. In vitro, P. falciparum–infected red blood cells dose dependently induced TNFRII+Foxp3hi Treg cells in PBMC from malaria-unexposed donors which showed greater suppressive activity than TNFRII− Treg cells. The selective enrichment of the Treg cell compartment for a maximally suppressive TNFRII+Foxp3hi Treg subset in severe malaria provides a potential link between immune suppression, increased parasite biomass, and malaria disease severity. The findings caution against the induction of TNFRII+Foxp3hi Treg cells when developing effective malaria vaccines

    Generation of Humoral Immune Responses to Multi-Allele PfAMA1 Vaccines; Effect of Adjuvant and Number of Component Alleles on the Breadth of Response

    Get PDF
    There is increasing interest in multi-allele vaccines to overcome strain-specificity against polymorphic vaccine targets such as Apical Membrane Antigen 1 (AMA1). These have been shown to induce broad inhibitory antibodies in vitro and formed the basis for the design of three Diversity-Covering (DiCo) proteins with similar immunological effects. The antibodies produced are to epitopes that are shared between vaccine alleles and theoretically, increasing the number of component AMA1 alleles is expected to broaden the antibody response. A plateau effect could however impose a limit on the number of alleles needed to achieve the broadest specificity. Moreover, production cost and the vaccine formulation process would limit the number of component alleles. In this paper, we compare rabbit antibody responses elicited with multi-allele vaccines incorporating seven (three DiCos and four natural AMA1 alleles) and three (DiCo mix) antigens for gains in broadened specificity. We also investigate the effect of three adjuvant platforms on antigen specificity and antibody functionality. Our data confirms a broadened response after immunisation with DiCo mix in all three adjuvants. Higher antibody titres were elicited with either CoVaccine HT™ or Montanide ISA 51, resulting in similar in vitro inhibition (65–82%) of five out of six culture-adapted P. falciparum strains. The antigen binding specificities of elicited antibodies were also similar and independent of the adjuvant used or the number of vaccine component alleles. Thus neither the four extra antigens nor adjuvant had any observable benefits with respect to specificity broadening, although adjuvant choice influenced the absolute antibody levels and thus the extent of parasite inhibition. Our data confirms the feasibility and potential of multi-allele PfAMA1 formulations, and highlights the need for adjuvants with improved antibody potentiation properties for AMA1-based vaccines

    CD4+ Natural Regulatory T Cells Prevent Experimental Cerebral Malaria via CTLA-4 When Expanded In Vivo

    Get PDF
    Studies in malaria patients indicate that higher frequencies of peripheral blood CD4+ Foxp3+ CD25+ regulatory T (Treg) cells correlate with increased blood parasitemia. This observation implies that Treg cells impair pathogen clearance and thus may be detrimental to the host during infection. In C57BL/6 mice infected with Plasmodium berghei ANKA, depletion of Foxp3+ cells did not improve parasite control or disease outcome. In contrast, elevating frequencies of natural Treg cells in vivo using IL-2/anti-IL-2 complexes resulted in complete protection against severe disease. This protection was entirely dependent upon Foxp3+ cells and resulted in lower parasite biomass, impaired antigen-specific CD4+ T and CD8+ T cell responses that would normally promote parasite tissue sequestration in this model, and reduced recruitment of conventional T cells to the brain. Furthermore, Foxp3+ cell-mediated protection was dependent upon CTLA-4 but not IL-10. These data show that T cell-mediated parasite tissue sequestration can be reduced by regulatory T cells in a mouse model of malaria, thereby limiting malaria-induced immune pathology

    Natural Regulatory T Cells in Malaria: Host or Parasite Allies?

    Get PDF
    Plasmodium falciparum malaria causes 500 million clinical cases with approximately one million deaths each year. After many years of exposure, individuals living in endemic areas develop a form of clinical immunity to disease known as premunition, which is characterised by low parasite burdens rather than sterilising immunity. The reason why malaria parasites persist under a state of premunition is unknown but it has been suggested that suppression of protective immunity might be a mechanism leading to parasite persistence. Although acquired immunity limits the clinical impact of infection and provides protection against parasite replication, experimental evidence indicates that cell-mediated immune responses also result in detrimental inflammation and contribute to the aetiology of severe disease. Thus, an appropriate regulatory balance between protective immune responses and immune-mediated pathology is required for a favourable outcome of infection. As natural regulatory T (Treg) cells are identified as an immunosuppressive lineage able to modulate the magnitude of effector responses, several studies have investigated whether this cell population plays a role in balancing protective immunity and pathogenesis during malaria. The main findings to date are summarised in this review and the implication for the induction of pathogenesis and immunity to malaria is discussed

    Longevity and Composition of Cellular Immune Responses Following Experimental Plasmodium falciparum Malaria Infection in Humans

    Get PDF
    Cellular responses to Plasmodium falciparum parasites, in particular interferon-gamma (IFNγ) production, play an important role in anti-malarial immunity. However, clinical immunity to malaria develops slowly amongst naturally exposed populations, the dynamics of cellular responses in relation to exposure are difficult to study and data about the persistence of such responses are controversial. Here we assess the longevity and composition of cellular immune responses following experimental malaria infection in human volunteers. We conducted a longitudinal study of cellular immunological responses to sporozoites (PfSpz) and asexual blood-stage (PfRBC) malaria parasites in naïve human volunteers undergoing single (n = 5) or multiple (n = 10) experimental P. falciparum infections under highly controlled conditions. IFNγ and interleukin-2 (IL-2) responses following in vitro re-stimulation were measured by flow-cytometry prior to, during and more than one year post infection. We show that cellular responses to both PfSpz and PfRBC are induced and remain almost undiminished up to 14 months after even a single malaria episode. Remarkably, not only ‘adaptive’ but also ‘innate’ lymphocyte subsets contribute to the increased IFNγ response, including αβT cells, γδT cells and NK cells. Furthermore, results from depletion and autologous recombination experiments of lymphocyte subsets suggest that immunological memory for PfRBC is carried within both the αβT cells and γδT compartments. Indeed, the majority of cytokine producing T lymphocytes express an CD45RO+ CD62L- effector memory (EM) phenotype both early and late post infection. Finally, we demonstrate that malaria infection induces and maintains polyfunctional (IFNγ+IL-2+) EM responses against both PfRBC and PfSpz, previously found to be associated with protection. These data demonstrate that cellular responses can be readily induced and are long-lived following infection with P. falciparum, with a persisting contribution by not only adaptive but also (semi-)innate lymphocyte subsets. The implications hereof are positive for malaria vaccine development, but focus attention on those factors potentially inhibiting such responses in the field

    Immune mechanisms in malaria: new insights in vaccine development.

    No full text
    Early data emerging from the first phase 3 trial of a malaria vaccine are raising hopes that a licensed vaccine will soon be available for use in endemic countries, but given the relatively low efficacy of the vaccine, this needs to be seen as a major step forward on the road to a malaria vaccine rather than as arrival at the final destination. The focus for vaccine developers now moves to the next generation of malaria vaccines, but it is not yet clear what characteristics these new vaccines should have or how they can be evaluated. Here we briefly review the epidemiological and immunological requirements for malaria vaccines and the recent history of malaria vaccine development and then put forward a manifesto for future research in this area. We argue that rational design of more effective malaria vaccines will be accelerated by a better understanding of the immune effector mechanisms involved in parasite regulation, control and elimination

    Impairment of IFN-Gamma Response to Synthetic Peptides of Mycobacterium tuberculosis in a 7-Day Whole Blood Assay

    Get PDF
    Studies on Mycobacterium tuberculosis (MTB) antigens are of interest in order to improve vaccine efficacy and to define biomarkers for diagnosis and treatment monitoring. The methodologies used for these investigations differ greatly between laboratories and discordant results are common. The IFN-gamma response to two well characterized MTB antigens ESAT-6 and CFP-10, in the form of recombinant proteins and synthetic peptides, was evaluated in HIV-1 uninfected persons in both long-term (7 day) and 24 hour, commercially available QuantiFERON TB Gold in Tube (QFT-GIT), whole blood assays. Our findings showed differences in the IFN-gamma response between 24 hour and 7 day cultures, with recombinant proteins inducing a significantly higher response than the peptide pools in 7 day whole blood assays. The activity of peptides and recombinant proteins did not differ in 24 hour whole blood or peripheral blood mononuclear cell (PBMC) based assays, nor in the ELISpot assay. Further analysis by SELDI-TOF mass spectrometry showed that the peptides are degraded over the course of 7 days of incubation in whole blood whilst the recombinant proteins remain intact. This study therefore demonstrates that screening antigenic candidates as synthetic peptides in long-term whole blood assays may underestimate immunogenicity
    corecore