800 research outputs found
Recommended from our members
Chemical screening by time-resolved X-ray scattering to discover allosteric probes
Drug discovery relies on efficient identification of small-molecule leads and their interactions with macromolecular targets. However, understanding how chemotypes impact mechanistically important conformational states often remains secondary among high-throughput discovery methods. Here, we present a conformational discovery pipeline integrating time-resolved, high-throughput small-angle X-ray scattering (TR-HT-SAXS) and classic fragment screening applied to allosteric states of the mitochondrial import oxidoreductase apoptosis-inducing factor (AIF). By monitoring oxidized and X-ray-reduced AIF states, TR-HT-SAXS leverages structure and kinetics to generate a multidimensional screening dataset that identifies fragment chemotypes allosterically stimulating AIF dimerization. Fragment-induced dimerization rates, quantified with time-resolved SAXS similarity analysis (kVR), capture structure-activity relationships (SAR) across the top-ranked 4-aminoquinoline chemotype. Crystallized AIF-aminoquinoline complexes validate TR-SAXS-guided SAR, supporting this conformational chemotype for optimization. AIF-aminoquinoline structures and mutational analysis reveal active site F482 as an underappreciated allosteric stabilizer of AIF dimerization. This conformational discovery pipeline illustrates TR-HT-SAXS as an effective technology for targeting chemical leads to important macromolecular states
Heterogeneous Nuclear Ribonucleoprotein K Is Overexpressed in Acute Myeloid Leukemia and Causes Myeloproliferation in Mice via Altered
Acute myeloid leukemia (AML) is driven by numerous molecular events that contribute to disease progression. Herein, we identify hnRNP K overexpression as a recurrent abnormality in AML that negatively correlates with patient survival. Overexpression of hnRNP K in murine fetal liver cells results in altered self-renewal and differentiation potential. Further, murine transplantation models reveal that hnRNP K overexpression results in myeloproliferation in vivo. Mechanistic studies expose a direct functional relationship between hnRNP K and RUNX1—a master transcriptional regulator of hematopoiesis often dysregulated in leukemia. Molecular analyses show that overexpression of hnRNP K results in an enrichment of an alternatively spliced isoform of RUNX1 lacking exon 4. Our work establishes hnRNP K’s oncogenic potential in influencing myelogenesis through its regulation of RUNX1 splicing and subsequent transcriptional activity
Mid-infrared plasmons in scaled graphene nanostructures
Plasmonics takes advantage of the collective response of electrons to
electromagnetic waves, enabling dramatic scaling of optical devices beyond the
diffraction limit. Here, we demonstrate the mid-infrared (4 to 15 microns)
plasmons in deeply scaled graphene nanostructures down to 50 nm, more than 100
times smaller than the on-resonance light wavelength in free space. We reveal,
for the first time, the crucial damping channels of graphene plasmons via its
intrinsic optical phonons and scattering from the edges. A plasmon lifetime of
20 femto-seconds and smaller is observed, when damping through the emission of
an optical phonon is allowed. Furthermore, the surface polar phonons in SiO2
substrate underneath the graphene nanostructures lead to a significantly
modified plasmon dispersion and damping, in contrast to a non-polar
diamond-like-carbon (DLC) substrate. Much reduced damping is realized when the
plasmon resonance frequencies are close to the polar phonon frequencies. Our
study paves the way for applications of graphene in plasmonic waveguides,
modulators and detectors in an unprecedentedly broad wavelength range from
sub-terahertz to mid-infrared.Comment: submitte
Isospin Asymmetry in Nuclei and Neutron Stars
The roles of isospin asymmetry in nuclei and neutron stars are investigated
using a range of potential and field-theoretical models of nucleonic matter.
The parameters of these models are fixed by fitting the properties of
homogeneous bulk matter and closed-shell nuclei. We discuss and unravel the
causes of correlations among the neutron skin thickness in heavy nuclei, the
pressure of beta-equilibrated matter at a density of 0.1 fm, the
derivative of the nuclear symmetry energy at the same density and the radii of
moderate mass neutron stars. Constraints on the symmetry properties of nuclear
matter from the binding energies of nuclei are examined. The extent to which
forthcoming neutron skin measurements will further delimit the symmetry
properties is investigated. The impact of symmetry energy constraints for the
mass and moment of inertia contained within neutron star crusts and the
threshold density for the nucleon direct Urca process, all of which are
potentially measurable, is explored. We also comment on the minimum neutron
star radius, assuming that only nucleonic matter exists within the star.Comment: 49 pages, 17 figures, Phys. Rep. (in press); made improvements to
"RAPR" and corrected transition densitie
Clinical reports of pulmonary metastasectomy for colorectal cancer: a citation network analysis
INTRODUCTION: Pulmonary metastasectomy for colorectal cancer is a commonly performed and well-established practice of similar to 50 years standing. However, there have been no controlled studies, randomised or otherwise. We sought to investigate the evidence base that has been used in establishing its status as a standard of care.METHODS: Among 51 papers used in a recent systematic review and quantitative synthesis, a citation network analysis was performed. A total of 344 publications (the 51 index papers and a further 293 cited in them) constitute the citation network.RESULTS: The pattern of citation is that of a citation cascade. Specific analyses show the frequent use of historical or landmark papers, which add authority. Papers expressing an opposing viewpoint are rarely cited.CONCLUSIONS: The citation network for this common and well-established practice provides an example of selective citation. This pattern of citation tends to escalate belief in a clinical practice even when it lacks a high-quality evidence base and may create an impression of more authority than is warranted.British Journal of Cancer (2011) 104, 1085-1097. doi: 10.1038/sj.bjc.6606060 www.bjcancer.comPublished online 8 March 2011 (c) 2011 Cancer Research U
Synthetic Cationic Helical Polypeptides for the Stimulation of Antitumour Innate Immune Pathways in Antigen-Presenting Cells
Intracellular DNA sensors regulate innate immunity and can provide a bridge to adaptive immunogenicity. However, the activation of the sensors in antigen-presenting cells (APCs) by natural agonists such as double-stranded DNAs or cyclic nucleotides is impeded by poor intracellular delivery, serum stability, enzymatic degradation and rapid systemic clearance. Here we show that the hydrophobicity, electrostatic charge and secondary conformation of helical polypeptides can be optimized to stimulate innate immune pathways via endoplasmic reticulum stress in APCs. One of the three polypeptides that we engineered activated two major intracellular DNA-sensing pathways (cGAS-STING (for cyclic guanosine monophosphate-adenosine monophosphate synthase-stimulator of interferon genes) and Toll-like receptor 9) preferentially in APCs by promoting the release of mitochondrial DNA, which led to the efficient priming of effector T cells. In syngeneic mouse models of locally advanced and metastatic breast cancers, the polypeptides led to potent DNA-sensor-mediated antitumour responses when intravenously given as monotherapy or with immune checkpoint inhibitors. The activation of multiple innate immune pathways via engineered cationic polypeptides may offer therapeutic advantages in the generation of antitumour immune responses
Secondary insults following traumatic brain injury enhance complement activation in the human brain and release of the tissue damage marker S100B
To access publisher full text version of this article. Please click on the hyperlink in Additional Links field.OBJECT: Complement activation has been suggested to play a role in the development of secondary injuries following traumatic brain injury (TBI). The present study was initiated in order to analyze complement activation in relation to the primary brain injury and to secondary insults, frequently occurring following TBI. METHODS: Twenty patients suffering from severe TBI (Glasgow coma score ≤ 8) were included in the study. The "membrane attack complex," C5b9, which is the cytolytic end product of the complement system was analyzed in cerebrospinal fluid (CSF). The degree of brain tissue damage was assessed using the release of S100B and neuron-specific enolase (NSE) to the CSF and blood. The blood-brain barrier was assessed using the CSF/serum quotient of albumin (Q (A)). RESULTS: Following impact, initial peaks (0-48 h) of C5b9, S100B, and NSE with a concomitant loss of integrity of the blood-brain barrier were observed. Secondary insults at the intensive care unit were monitored. Severe secondary insults were paralleled by a more pronounced complement activation (C5b9 in CSF) as well as increased levels of S100B (measured in CSF), but not with NSE. CONCLUSION: This human study indicates that complement activation in the brain is triggered not only by the impact of trauma per se but also by the amount of secondary insults that frequently occur at the scene of accident as well as during treatment in the neurointensive care unit. Complement activation and in particular the end product C5b9 may in turn contribute to additional secondary brain injuries by its membrane destructive properties
Comparative Genomics of 2009 Seasonal Plague (Yersinia pestis) in New Mexico
Plague disease caused by the Gram-negative bacterium Yersinia pestis routinely affects animals and occasionally humans, in the western United States. The strains native to the North American continent are thought to be derived from a single introduction in the late 19th century. The degree to which these isolates have diverged genetically since their introduction is not clear, and new genomic markers to assay the diversity of North American plague are highly desired. To assay genetic diversity of plague isolates within confined geographic areas, draft genome sequences were generated by 454 pyrosequencing from nine environmental and clinical plague isolates. In silico assemblies of Variable Number Tandem Repeat (VNTR) loci were compared to laboratory-generated profiles for seven markers. High-confidence SNPs and small Insertion/Deletions (Indels) were compared to previously sequenced Y. pestis isolates. The resulting panel of mutations allowed clustering of the strains and tracing of the most likely evolutionary trajectory of the plague strains. The sequences also allowed the identification of new putative SNPs that differentiate the 2009 isolates from previously sequenced plague strains and from each other. In addition, new insertion points for the abundant insertion sequences (IS) of Y. pestis are present that allow additional discrimination of strains; several of these new insertions potentially inactivate genes implicated in virulence. These sequences enable whole-genome phylogenetic analysis and allow the unbiased comparison of closely related isolates of a genetically monomorphic pathogen
The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe
The preponderance of matter over antimatter in the early Universe, the
dynamics of the supernova bursts that produced the heavy elements necessary for
life and whether protons eventually decay --- these mysteries at the forefront
of particle physics and astrophysics are key to understanding the early
evolution of our Universe, its current state and its eventual fate. The
Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed
plan for a world-class experiment dedicated to addressing these questions. LBNE
is conceived around three central components: (1) a new, high-intensity
neutrino source generated from a megawatt-class proton accelerator at Fermi
National Accelerator Laboratory, (2) a near neutrino detector just downstream
of the source, and (3) a massive liquid argon time-projection chamber deployed
as a far detector deep underground at the Sanford Underground Research
Facility. This facility, located at the site of the former Homestake Mine in
Lead, South Dakota, is approximately 1,300 km from the neutrino source at
Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino
charge-parity symmetry violation and mass ordering effects. This ambitious yet
cost-effective design incorporates scalability and flexibility and can
accommodate a variety of upgrades and contributions. With its exceptional
combination of experimental configuration, technical capabilities, and
potential for transformative discoveries, LBNE promises to be a vital facility
for the field of particle physics worldwide, providing physicists from around
the globe with opportunities to collaborate in a twenty to thirty year program
of exciting science. In this document we provide a comprehensive overview of
LBNE's scientific objectives, its place in the landscape of neutrino physics
worldwide, the technologies it will incorporate and the capabilities it will
possess.Comment: Major update of previous version. This is the reference document for
LBNE science program and current status. Chapters 1, 3, and 9 provide a
comprehensive overview of LBNE's scientific objectives, its place in the
landscape of neutrino physics worldwide, the technologies it will incorporate
and the capabilities it will possess. 288 pages, 116 figure
MALDI imaging mass spectrometry for direct tissue analysis: a new frontier for molecular histology
Matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) is a powerful tool for investigating the distribution of proteins and small molecules within biological systems through the in situ analysis of tissue sections. MALDI-IMS can determine the distribution of hundreds of unknown compounds in a single measurement and enables the acquisition of cellular expression profiles while maintaining the cellular and molecular integrity. In recent years, a great many advances in the practice of imaging mass spectrometry have taken place, making the technique more sensitive, robust, and ultimately useful. In this review, we focus on the current state of the art of MALDI-IMS, describe basic technological developments for MALDI-IMS of animal and human tissues, and discuss some recent applications in basic research and in clinical settings
- …