16 research outputs found

    Ocean and coastal acidification off New England and Nova Scotia

    Get PDF
    Author Posting. © The Oceanography Society, 2015. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 28, no. 2 (2015): 182-197, doi:10.5670/oceanog.2015.41.New England coastal and adjacent Nova Scotia shelf waters have a reduced buffering capacity because of significant freshwater input, making the region’s waters potentially more vulnerable to coastal acidification. Nutrient loading and heavy precipitation events further acidify the region’s poorly buffered coastal waters. Despite the apparent vulnerability of these waters, and fisheries’ and mariculture’s significant dependence on calcifying species, the community lacks the ability to confidently predict how the region’s ecosystems will respond to continued ocean and coastal acidification. Here, we discuss ocean and coastal acidification processes specific to New England coastal and Nova Scotia shelf waters and review current understanding of the biological consequences most relevant to the region. We also identify key research and monitoring needs to be addressed and highlight existing capacities that should be leveraged to advance a regional understanding of ocean and coastal acidification.This project was supported in part by an appointment to the Internship/Research Participation Program at the Office of Water, US Environmental Protection Agency (EPA), administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the US Department of Energy and the EPA. JS acknowledges support from NASA grant from NNX14AL84G NASA-CCS

    Ecology- and bioassay-guided drug discovery for treatments of tropical parasitic disease: 5α,8α-epidioxycholest-6-en-3β-ol isolated from the mollusk Dolabrifera dolabrifera shows significant activity against Leishmania donovani

    No full text
    An ecology- and bioassay-guided search employed to discover compounds with activity against tropical parasitic diseases and cancer from the opisthobranch mollusk, Dolabrifera dolabrifera, led to the discovery of antileishmanial properties in the known compound, 5α,8α-epidioxycholest-6-en-3β-ol (1). Compound 1 was identified through nuclear magnetic resonance spectroscopy (1H, 13C) and mass spectrometry. The compound was concentrated in the digestive gland of D. dolabrifera, but was not detected in other body parts, fecal matter or mucus. Compound 1 showed an IC50 of 4.9 µM towards the amastigote form of Leishmania donovani compared with an IC50 of 281 µM towards the control Vero cell line, a 57.3-fold difference, and demonstrated no measurable activity against Plasmodium falciparum, Trypanosoma cruzi, and the breast cancer cell line, MCF-7

    Ecology- and bioassay-guided drug discovery for treatments of tropical parasitic disease: 5a,8a-epidioxycholest-6-en-3β-isolated from the mollusk dolabrifera dolabrifera shows significant activity against leishmania donovani

    No full text
    An ecology- and bioassay-guided search employed to discover compounds with activity against tropical parasitic diseases and cancer from the opisthobranch mollusk, Dolabrifera dolabrifera, led to the discovery of antileishmanial properties in the known compound, 5a,8a-epidioxycholest-6- en-3ß-ol (1). Compound 1 was identified through nuclear magnetic resonance spectroscopy (1H, 13C) and mass spectrometry. The compound was concentrated in the digestive gland of D. dolabrifera, but was not detected in other body parts, fecal matter or mucus. Compound 1 showed an IC50 of 4.9 μM towards the amastigote form of Leishmania donovani compared with an IC50 of 281 μM towards the control Vero cell line, a 57.3-fold difference, and demonstrated no measurable activity against Plasmodium falciparum, Trypanosoma cruzi, and the breast cancer cell line, MCF-7
    corecore