462 research outputs found

    The chromosome 6q22.33 region is associated with age at diagnosis of type 1 diabetes and disease risk in those diagnosed under 5 years of age

    Get PDF
    AIMS/HYPOTHESIS: The genetic risk of type 1 diabetes has been extensively studied. However, the genetic determinants of age at diagnosis (AAD) of type 1 diabetes remain relatively unexplained. Identification of AAD genes and pathways could provide insight into the earliest events in the disease process. METHODS: Using ImmunoChip data from 15,696 cases, we aimed to identify regions in the genome associated with AAD. RESULTS: Two regions were convincingly associated with AAD (p  0.001), the SNP most associated with AAD, rs72975913, was associated with susceptibility to type 1 diabetes in those individuals diagnosed at less than 5 years old (p = 2.3 × 10(-9)). CONCLUSION/INTERPRETATION: PTPRK and its neighbour THEMIS are required for early development of the thymus, which we can assume influences the initiation of autoimmunity. Non-HLA genes may only be detectable as risk factors for the disease in individuals diagnosed under the age 5 years because, after that period of immune development, their role in disease susceptibility has become redundant.CW is funded by the Wellcome Trust (WT107881) and the Medical Research Council (MC_UP_1302/5). LB was supported by the Alan Turing Institute under the EPSRC grant EP/N510129/1

    Neuromedin U partially mediates leptin-induced hypothalamo-pituitary adrenal (HPA) stimulation and has a physiological role in the regulation of the HPA axis in the rat.

    No full text
    Intracerebroventricular (ICV) administration of the hypothalamic neuropeptide neuromedin U (NMU) or the adipostat hormone leptin increases plasma ACTH and corticosterone. The relationship between leptin and NMU in the regulation of the hypothalamo-pituitary adrenal (HPA) axis is currently unknown. In this study, leptin (1 nM) significantly increased the release of CRH from ex vivo hypothalamic explants by 207 ± 8.4% (P < 0.05 vs. basal), an effect blocked by the administration of anti-NMU IgG. The ICV administration of leptin (10 μg, 0.625 nmol) increased plasma ACTH and corticosterone 20 min after injection [plasma ACTH (picograms per milliliter): vehicle, 63 ± 20, leptin, 135 ± 36, P < 0.05; plasma corticosterone (nanograms per milliliter): vehicle, 285 ± 39, leptin, 452 ± 44, P < 0.01]. These effects were partially attenuated by the prior administration of anti-NMU IgG. Peripheral leptin also stimulated ACTH release, an effect attenuated by prior ICV administration of anti-NMU IgG. We examined the diurnal pattern of hypothalamic NMU mRNA expression and peptide content, plasma leptin, and plasma corticosterone. The diurnal changes in hypothalamic NMU mRNA expression were positively correlated with hypothalamic NMU peptide content, plasma corticosterone, and plasma leptin. The ICV administration of anti-NMU IgG significantly attenuated the dark phase rise in corticosterone [corticosterone (nanograms per milliliter): vehicle, 493 ± 38; NMU IgG, 342 ± 47 (P < 0.05)]. These studies suggest that NMU may play a role in the regulation of the HPA axis and partially mediate leptin-induced HPA stimulation. Copyright © 2006 by The Endocrine Society

    Effective recruitment of participants to a phase I study using the internet and publicity releases through charities and patient organisations: analysis of the adaptive study of IL-2 dose on regulatory T cells in type 1 diabetes (DILT1D).

    Get PDF
    A barrier to the successful development of new disease treatments is the timely recruitment of participants to experimental medicine studies that are primarily designed to investigate biological mechanisms rather than evaluate clinical efficacy. The aim of this study was to analyse the performance of three recruitment sources and the effect of publicity events during the Adaptive study of IL-2 dose on regulatory T cells in type 1 diabetes (DILT1D).This work is funded by the JDRF (9-2011-253), the Wellcome Trust (091157) and the National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre. The research leading to these results has received funding from the European Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement number 241447 (NAIMIT). The Cambridge Institute for Medical Research (CIMR) is in receipt of a Wellcome Trust Strategic Award (100140).This is the final version of the article. It first appeared from BMC via http://dx.doi.org/10.1186/s13063-015-0583-

    Inhibition of p38-MAPK signaling pathway attenuates breast cancer induced bone pain and disease progression in a murine model of cancer-induced bone pain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mechanisms driving cancer-induced bone pain are poorly understood. A central factor implicated to be a key player in the process of tumorigenesis, osteoclastogenesis and nociception is p38 MAPK. We determined the role of p38 MAPK in a mouse model of breast cancer induced bone pain in which mixed osteolytic and osteoblastic remodeling occurs.</p> <p>Results</p> <p>In cancer-treated mice, acute as well as chronic inhibition of p38 MAPK with SB203580 blocked flinching and guarding behaviors in a dose-dependent manner whereas no effect on thresholds to tactile stimuli was observed. Radiographic analyses of bones demonstrated that chronic inhibition of p38 MAPK reduced bone loss and incidence of spontaneous fracture in cancer-treated mice. Histological analysis of bones collected from mice treated with the p38 MAPK inhibitor showed complete absence of osteoblastic growth in the intramedullary space as well as significantly reduced tumor burden.</p> <p>Conclusions</p> <p>Blockade of non-evoked pain behaviors but not hypersensitivity suggests differences in the underlying mechanisms of specific components of the pain syndrome and a possibility to individualize aspects of pain management. While it is not known whether the role of p38 MAPK signaling can be expanded to other cancers, the data suggest a need for understanding molecular mechanisms and cellular events that initiate and maintain cancer-induced bone pain for effective management for both ongoing pain as well as breakthrough pain.</p

    Paracheck-Pf® accuracy and recently treated Plasmodium falciparum infections: is there a risk of over-diagnosis?

    Get PDF
    BACKGROUND: An assessment of the accuracy of Paracheck Pf, a malaria rapid diagnostic test (RDT) detecting histidine rich protein 2 was undertaken amongst children aged 6-59 months in eastern Democratic Republic of Congo. METHODS: This RDT assessment occurred in conjunction with an ACT efficacy trial. Febrile children were simultaneously screened with both RDT and high quality microscopy and those meeting inclusion criteria were followed for 35 days. RESULTS: 358 febrile children were screened with 180 children recruited for five weeks follow-up. On screening, the RDT accurately diagnosed all 235 true malaria cases, indicating 100% RDT sensitivity. Of the 123 negative slides, the RDT gave 59 false-positive results, indicating 52.0% (64/123) RDT specificity. During follow-up after treatment with an artemisinin-based combination therapy, 98.2% (110/112), 94.6% (106/112), 92.0% (103/112) and 73.5% (50/68) of effectively treated children were still false-positive by RDT at days 14, 21, 28 and 35, respectively. CONCLUSION: Results show that though the use of Paracheck-Pf is as sensitive as microscopy in detecting true malaria cases, a low specificity did present a high frequency of false-positive RDT results. What's more, a duration of RDT false-positivity was found that significantly surpassed the 'fortnight' after effective treatment reported by its manufacturer. Though further research is needed in assessing RDT accuracy, study results showing the presence of frequent false positivity should be taken into consideration to avoid clinicians inappropriately focusing on malaria, not identifying the true cause of illness, and providing unnecessary treatment
    corecore