4 research outputs found

    Limited Effects of Precipitation Manipulation on Soil Respiration and Inorganic N Concentrations Across Soil Drainage Classes in Northern Minnesota Aspen Forests

    Get PDF
    It is critical to gain insight into the responses of forest soils to the changing climate. We simulated future climate conditions with growing season throughfall reduction (by 50%) and winter snow removal using a paired-plot design across a soil drainage class gradient at three upland, Populus-dominated forests in northern Minnesota, USA. In situ bulk soil respiration and concentrations of extractable soil N were measured during the summers of 2020–2021. Soil respiration and N concentrations were not affected by throughfall reduction and snow removal, which was largely attributed to the limited treatment effects on soil moisture content and soil temperature. Drainage class was only a significant factor during the spring thaw period in 2021. During this period, the poorly drained plots had lower respiration rates compared to the well-drained plots, which was associated with the drainage class effects on soil temperature. The results of the companion laboratory incubation with varying levels of soil moisture also indicated no effect of the treatment on soil respiration, but effects of drainage class and moisture content on respiration were observed. Our results indicate that the combined effects of reduced summer and winter precipitation on soil respiration and N dynamics may be limited across the range of conditions that occurred in our study

    Effects of Biochar on Drought Tolerance of <i>Pinus banksiana</i> Seedlings

    No full text
    Drought is a major stressor of tree seedlings regarding both natural and artificial regeneration, especially in excessively drained, sandy outwash soils. While climate change is expected to cause an increase in the total annual precipitation in the Upper Midwest, USA, the timing of the precipitation is predicted to result in longer periods of drought during the growing season. Biochar, a material created through the pyrolysis of organic matter, such as wood waste, has been proposed as a soil amendment that may increase the water holding capacity of a soil. Biochar has mostly been studied in agricultural settings, and less is known about the impact of biochar on forest soils and tree seedlings. We used a greenhouse experiment to test the ability of biochar to improve the drought tolerance of jack pine (Pinus banksiana) seedlings via increased soil water holding capacity. The seedlings were planted in sandy soil treated with three levels of biochar (none, 3% by weight, and 6% by weight) in two experiments, one manipulating the timing of drought onset and the other controlling the amount of water that seedlings received. Our results showed no significant effects of biochar on seedling survival, growth, or physiology under drought conditions. While this outcome did not support the hypothesis that biochar would increase seedling performance, the biochar amendments did not negatively affect seedlings, indicating that biochar may be added to soil for carbon storage without having negative short-term impacts on tree seedlings

    The Effects of Combined Throughfall Reduction and Snow Removal on Soil Physical Properties Across a Drainage Gradient in Aspen Forests of Northern Minnesota, USA

    No full text
    Climate change is projected to alter precipitation patterns across northern latitudes, with decreased snow accumulation and summer rainfall predicted. These changes may alter soil physical properties such as soil strength, which would have implications for the feasibility of forest management activities. Reductions in summer and winter precipitation were simulated using a paired-plot design with throughfall reduction and snow removal as treatments across four soil drainage classes (well, moderately well, somewhat poor, and poorly drained) at each of three locations in northern Minnesota, USA. Snow removal caused large reductions in soil temperature and significantly deeper penetration of frost that varied by drainage class, where frost depth decreased with decreasing (wetter) drainage. There was a positive relationship between air freezing index and frost depth, where the rate of frost development was much higher in the snow removal treatment compared to the control (r2 of treatment = 0.8, slope = 0.093, p \u3c 0.001; r2 of control = 0.18, slope = 0.012, p \u3c 0.001). Throughfall reduction had limited effects on soil water content (SWC) and inconsistent effects on soil strength; relationships between SWC and strength were positive, negative, or non-existent. Based on these findings, changes in soil physical properties with altered precipitation are likely to manifest primarily in winter. Drainage class and air freezing index may be used to predict when sufficient soil frost is present for forest management activities to occur without detrimental effects to soil functions

    Limited Effects of Precipitation Manipulation on Soil Respiration and Inorganic N Concentrations across Soil Drainage Classes in Northern Minnesota Aspen Forests

    No full text
    It is critical to gain insight into the responses of forest soils to the changing climate. We simulated future climate conditions with growing season throughfall reduction (by 50%) and winter snow removal using a paired-plot design across a soil drainage class gradient at three upland, Populus-dominated forests in northern Minnesota, USA. In situ bulk soil respiration and concentrations of extractable soil N were measured during the summers of 2020&ndash;2021. Soil respiration and N concentrations were not affected by throughfall reduction and snow removal, which was largely attributed to the limited treatment effects on soil moisture content and soil temperature. Drainage class was only a significant factor during the spring thaw period in 2021. During this period, the poorly drained plots had lower respiration rates compared to the well-drained plots, which was associated with the drainage class effects on soil temperature. The results of the companion laboratory incubation with varying levels of soil moisture also indicated no effect of the treatment on soil respiration, but effects of drainage class and moisture content on respiration were observed. Our results indicate that the combined effects of reduced summer and winter precipitation on soil respiration and N dynamics may be limited across the range of conditions that occurred in our study
    corecore