3 research outputs found

    Utilizing a Global Network of Telescopes to Update the Ephemeris for the Highly Eccentric Planet HD 80606 b and to Ensure the Efficient Scheduling of JWST

    Get PDF
    The transiting planet HD 80606 b undergoes a 1000 fold increase in insolation during its 111 days orbit due to it being highly eccentric (e = 0.93). The planet's effective temperature increases from 400 to over 1400 K in a few hours as it makes a rapid passage to within 0.03 au of its host star during periapsis. Spectroscopic observations during the eclipse (which is conveniently oriented a few hours before periapsis) of HD 80606 b with the James Webb Space Telescope (JWST) are poised to exploit this highly variable environment to study a wide variety of atmospheric properties, including composition, chemical and dynamical timescales, and large scale atmospheric motions. Critical to planning and interpreting these observations is an accurate knowledge of the planet's orbit. We report on observations of two full-transit events: 2020 February 7 as observed by the TESS spacecraft and 2021 December 7-8 as observed with a worldwide network of small telescopes. We also report new radial velocity observations which, when analyzed with a coupled model to the transits, greatly improves the planet's orbital ephemeris. Our new orbit solution reduces the uncertainty in the transit and eclipse timing of the JWST era from tens of minutes to a few minutes. When combined with the planned JWST observations, this new precision may be adequate to look for non-Keplerian effects in the orbit of HD 80606 b

    Building an Online Astronomy Research Student Team at Stanford Online High School

    No full text
    For high-school students that have never met in person, and that never expect to meet in person, some unique considerations arise in building a research team. Thoughtful strengthening of team member relationships is both more challenging and more vital than it is for an in-person collaboration. Furthermore, team members must possess a deeper understanding of the scientific process than typical students. The Stanford Online High School (SOHS) science curriculum fosters both the technical savvy and the scientific awareness that are advantageous in structuring an effective online collaborative research experience. This article describes an Stanford Online High School (SOHS) instructor’s experience in cultivating the type of student for whom an online student research team experience is well-suited, and outlines some applications in the context of the Astronomy Research Seminar’s broadening scope

    Student Scientific Research within Communities-of-Practice

    No full text
    Social learning theory suggests that students who wish to become scientists will benefit by being active researchers early in their educational careers. As coauthors of published research, they identify themselves as scientists. This provides them with the inspiration, motivation, and staying power that many will need to complete the long educational process. This hypothesis was put to the test over the past decade by a one-semester astronomy research seminar where teams of students managed their own research. Well over a hundred published papers coauthored by high school and undergraduate students at a handful of schools substantiated this hypothesis. However, one could argue that this was a special case. Astronomy, after all, is supported by a large professional-amateur community-of-practice. Furthermore, the specific area of research—double star astrometry—was chosen because the observations could be quickly made, the data reduction and analysis was straight forward, and publication of the research was welcomed by the Journal of Double Star Observations. A recently initiated seminar development and expansion program—supported in part by the National Science Foundation—is testing a more general hypothesis that: (1) the seminar can be successfully adopted by many other schools; (2) research within astronomy can be extended from double star astrometry to time series photometry of variable stars, exoplanet transits, and asteroids; and (3) the seminar model can be extended to a science beyond astronomy: environmental science—specifically atmospheric science. If the more general hypothesis is also supported, seminars that similarly feature published high school and undergraduate studen
    corecore