3 research outputs found

    A new search for features in the primordial power spectrum

    Full text link
    We develop a new approach toward a high resolution non-parametric reconstruction of the primordial power spectrum using WMAP cosmic microwave background temperature anisotropies that we confront with SDSS large-scale structure data in the range k~0.01-0.1 h/Mpc. We utilise the standard LambdaCDM cosmological model but we allow the baryon fraction to vary. In particular, for the concordance baryon fraction, we compare indications of a possible feature at k~0.05 h/Mpc in WMAP data with suggestions of similar features in large scale structure surveys.Comment: revised version, conclusions unchanged, 7 figures, accepted for publication in MNRA

    Primordial Power Spectrum Reconstruction

    Full text link
    In order to reconstruct the initial conditions of the universe it is important to devise a method that can efficiently constrain the shape of the power spectrum of primordial matter density fluctuations in a model-independent way from data. In an earlier paper we proposed a method based on the wavelet expansion of the primordial power spectrum. The advantage of this method is that the orthogonality and multiresolution properties of wavelet basis functions enable information regarding the shape of Pin(k)P_{\rm in}(k) to be encoded in a small number of non-zero coefficients. Any deviation from scale-invariance can then be easily picked out. Here we apply this method to simulated data to demonstrate that it can accurately reconstruct an input Pin(k)P_{\rm in}(k), and present a prescription for how this method should be used on future data.Comment: 4 pages, 2 figures. JCAP accepted versio
    corecore