116 research outputs found

    VISAR: A Human-AI Argumentative Writing Assistant with Visual Programming and Rapid Draft Prototyping

    Full text link
    In argumentative writing, writers must brainstorm hierarchical writing goals, ensure the persuasiveness of their arguments, and revise and organize their plans through drafting. Recent advances in large language models (LLMs) have made interactive text generation through a chat interface (e.g., ChatGPT) possible. However, this approach often neglects implicit writing context and user intent, lacks support for user control and autonomy, and provides limited assistance for sensemaking and revising writing plans. To address these challenges, we introduce VISAR, an AI-enabled writing assistant system designed to help writers brainstorm and revise hierarchical goals within their writing context, organize argument structures through synchronized text editing and visual programming, and enhance persuasiveness with argumentation spark recommendations. VISAR allows users to explore, experiment with, and validate their writing plans using automatic draft prototyping. A controlled lab study confirmed the usability and effectiveness of VISAR in facilitating the argumentative writing planning process.Comment: 30 pages, published in UIST'2

    PEANUT: A Human-AI Collaborative Tool for Annotating Audio-Visual Data

    Full text link
    Audio-visual learning seeks to enhance the computer's multi-modal perception leveraging the correlation between the auditory and visual modalities. Despite their many useful downstream tasks, such as video retrieval, AR/VR, and accessibility, the performance and adoption of existing audio-visual models have been impeded by the availability of high-quality datasets. Annotating audio-visual datasets is laborious, expensive, and time-consuming. To address this challenge, we designed and developed an efficient audio-visual annotation tool called Peanut. Peanut's human-AI collaborative pipeline separates the multi-modal task into two single-modal tasks, and utilizes state-of-the-art object detection and sound-tagging models to reduce the annotators' effort to process each frame and the number of manually-annotated frames needed. A within-subject user study with 20 participants found that Peanut can significantly accelerate the audio-visual data annotation process while maintaining high annotation accuracy.Comment: 18 pages, published in UIST'2

    Structured Generation and Exploration of Design Space with Large Language Models for Human-AI Co-Creation

    Full text link
    Thanks to their generative capabilities, large language models (LLMs) have become an invaluable tool for creative processes. These models have the capacity to produce hundreds and thousands of visual and textual outputs, offering abundant inspiration for creative endeavors. But are we harnessing their full potential? We argue that current interaction paradigms fall short, guiding users towards rapid convergence on a limited set of ideas, rather than empowering them to explore the vast latent design space in generative models. To address this limitation, we propose a framework that facilitates the structured generation of design space in which users can seamlessly explore, evaluate, and synthesize a multitude of responses. We demonstrate the feasibility and usefulness of this framework through the design and development of an interactive system, Luminate, and a user study with 8 professional writers. Our work advances how we interact with LLMs for creative tasks, introducing a way to harness the creative potential of LLMs

    UI Layout Generation with LLMs Guided by UI Grammar

    Full text link
    The recent advances in Large Language Models (LLMs) have stimulated interest among researchers and industry professionals, particularly in their application to tasks concerning mobile user interfaces (UIs). This position paper investigates the use of LLMs for UI layout generation. Central to our exploration is the introduction of UI grammar -- a novel approach we proposed to represent the hierarchical structure inherent in UI screens. The aim of this approach is to guide the generative capacities of LLMs more effectively and improve the explainability and controllability of the process. Initial experiments conducted with GPT-4 showed the promising capability of LLMs to produce high-quality user interfaces via in-context learning. Furthermore, our preliminary comparative study suggested the potential of the grammar-based approach in improving the quality of generative results in specific aspects.Comment: ICML 2023 Workshop on AI and HC

    From Awareness to Action: Exploring End-User Empowerment Interventions for Dark Patterns in UX

    Full text link
    The study of UX dark patterns, i.e., UI designs that seek to manipulate user behaviors, often for the benefit of online services, has drawn significant attention in the CHI and CSCW communities in recent years. To complement previous studies in addressing dark patterns from (1) the designer's perspective on education and advocacy for ethical designs; and (2) the policymaker's perspective on new regulations, we propose an end-user-empowerment intervention approach that helps users (1) raise the awareness of dark patterns and understand their underlying design intents; (2) take actions to counter the effects of dark patterns using a web augmentation approach. Through a two-phase co-design study, including 5 co-design workshops (N=12) and a 2-week technology probe study (N=15), we reported findings on the understanding of users' needs, preferences, and challenges in handling dark patterns and investigated the feedback and reactions to users' awareness of and action on dark patterns being empowered in a realistic in-situ setting.Comment: Conditionally Accepted at CSCW 202

    Shaping the Emerging Norms of Using Large Language Models in Social Computing Research

    Full text link
    The emergence of Large Language Models (LLMs) has brought both excitement and concerns to social computing research. On the one hand, LLMs offer unprecedented capabilities in analyzing vast amounts of textual data and generating human-like responses, enabling researchers to delve into complex social phenomena. On the other hand, concerns are emerging regarding the validity, privacy, and ethics of the research when LLMs are involved. This SIG aims at offering an open space for social computing researchers who are interested in understanding the impacts of LLMs to discuss their current practices, perspectives, challenges when engaging with LLMs in their everyday work and collectively shaping the emerging norms of using LLMs in social computing research

    An Empathy-Based Sandbox Approach to Bridge Attitudes, Goals, Knowledge, and Behaviors in the Privacy Paradox

    Full text link
    The "privacy paradox" describes the discrepancy between users' privacy attitudes and their actual behaviors. Mitigating this discrepancy requires solutions that account for both system opaqueness and users' hesitations in testing different privacy settings due to fears of unintended data exposure. We introduce an empathy-based approach that allows users to experience how privacy behaviors may alter system outcomes in a risk-free sandbox environment from the perspective of artificially generated personas. To generate realistic personas, we introduce a novel pipeline that augments the outputs of large language models using few-shot learning, contextualization, and chain of thoughts. Our empirical studies demonstrated the adequate quality of generated personas and highlighted the changes in privacy-related applications (e.g., online advertising) caused by different personas. Furthermore, users demonstrated cognitive and emotional empathy towards the personas when interacting with our sandbox. We offered design implications for downstream applications in improving user privacy literacy and promoting behavior changes
    corecore