31 research outputs found

    Influence of Thermally Induced Chemorheological Changes on the Inflation of Spherical Elastomeric Membranes

    Full text link
    When an elastomeric material is deformed and subjected to temperatures above some chemorheological value T cr (near 100°C for natural rubber), its macromolecular structure undergoes time and temperature dependent chemical changes. The process continues until the temperature decreases below T cr . Compared to the virgin material, the new material system has modified properties (often a reduced stiffness) and permanent set on removal of the applied load. A recently proposed constitutive theory is used to study the influence of chemorheological changes on the inflation of an initially isotropic spherical rubber membrane. The membrane is inflated while at a temperature below T cr . We then look at the pressure response assuming the sphere's radius is held fixed while the temperature is increased above T cr for a period of time and then returned to its original value. The inflation pressure during this process is expressed in terms of the temperature, representing entropic stiffening of the elastomer, and a time dependent property that represents the kinetics of the chemorheological change in the elastomer. When the membrane has been returned to its original temperature, it is shown to have a permanent set and a modified pressure-inflated radius relation. Their dependence on the initial inflated radius, material properties and kinetics of chemorheological change is studied when the underlying elastomeric networks are neo-Hookean or Mooney–Rivlin.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42688/1/10659_2005_Article_9020.pd

    Degradation and healing in a generalized neo-Hookean solid due to infusion of a fluid

    Full text link
    The mechanical response and load bearing capacity of high performance polymer composites changes due to diffusion of a fluid, temperature, oxidation or the extent of the deformation. Hence, there is a need to study the response of bodies under such degradation mechanisms. In this paper, we study the effect of degradation and healing due to the diffusion of a fluid on the response of a solid which prior to the diffusion can be described by the generalized neo-Hookean model. We show that a generalized neo-Hookean solid - which behaves like an elastic body (i.e., it does not produce entropy) within a purely mechanical context - creeps and stress relaxes when infused with a fluid and behaves like a body whose material properties are time dependent. We specifically investigate the torsion of a generalized neo-Hookean circular cylindrical annulus infused with a fluid. The equations of equilibrium for a generalized neo-Hookean solid are solved together with the convection-diffusion equation for the fluid concentration. Different boundary conditions for the fluid concentration are also considered. We also solve the problem for the case when the diffusivity of the fluid depends on the deformation of the generalized neo-Hookean solid.Comment: 24 pages, 10 figures, submitted to Mechanics of Time-dependent Material

    Influence of thermally induced chemorheological changes on the torsion of elastomeric circular cylinders

    Full text link
    When an elastomeric material is deformed and subjected to temperatures above some characteristic value T cr (near 100 ∘ C for natural rubber), its macromolecular structure undergoes time and temperature-dependent chemical changes. The process continues until the temperature decreases below T cr . Compared to the virgin material, the new material system has modified properties (reduced stiffness) and permanent set on removal of the applied load.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46097/1/161_2006_Article_9.pd

    Molecular Weight of Linear Polymer from Transient Viscoelasticity

    No full text

    Model for the Oxidative Ageing process of Elastomers

    No full text
    corecore