58 research outputs found

    Unusual Maternal Dystocia

    Get PDF
    On October 20, 1941, an eleven-year-old Shorthorn cow was brought into the Stange Memorial Clinic. The owner reported that the cow was bred Jan. 10, 1941, and that it was time for a normal pregnancy to terminate. He also stated that the cow was in labor for several hours

    Robotic Exploration of Moon and Mars: Thematic Education Approach

    Get PDF
    Safe, sustained, affordable human and robotic exploration of the Moon, Mars, and beyond is a major NASA goal. Robotic exploration of the Moon and Mars will help pave the way for an expanded human presence in our solar system. To help share the robotic exploration role in the Vision for Space Exploration with classrooms, informal education groups, and the public, our team researched and consolidated the thematic story components and associated education activities into a useful education materials set for educators. We developed the set of materials for a workshop combining NASA Science Mission Directorate and Exploration Systems Mission Directorate engineering, science, and technology to train informal educators on education activities that support the robotic exploration themes. A major focus is on the use of robotic spacecraft and instruments to explore and prepare for the human exploration of the Moon and Mars

    Neutron diffraction and magnetocaloric effect studies of MnFe 1-x Co x P series of solid solutions

    Full text link
    International audienceMnFe 1-x Co x P intermetallic series of solid solutions (0.4<x<0.6) have been studied by means of powder neutron diffraction in 10−320 K temperature range. Rietveld analysis pointed out that Co 2 P-type orthorhombic crystal structure (SG: Pnma) presents for all series. Helicoidal incommensurate antiferromagnetic structure with propagation vector q = [0, 0, q] were evidenced for all compounds at low temperature range. The q value decreases with cobalt content and the second order polynomial q(x) it was evidenced, that is found well correlated with this dependence. Magnetic moments values of µ Mn =3.34 µ B and µ (Fe,Co) =0.06 µ B were determined from neutron diffraction refinements for x=0.4 at 10 K. In addition, magnetic interactions in relations with electronic band structure calculations of MnFe 1-x Co x P were presented and discussed reference to previous published data. Finally, magnetocaloric properties for selected compounds of the MnFe 1-x Co x P and MnFe 0.45 Co 0.45 P 0.9 Ge 0.1 series of compounds are presented

    Giant magnetocaloric effect in Mn 1-t (Ti 0.5 V 0.5 ) t as compounds near room temperature

    Full text link
    International audienceMn 1-t (Ti 0.5 V 0.5) t As compounds with t varying from 0 to 0.20 were synthesised by arc melting and subsequently annealed. The X-ray diffraction analysis reveals pure and fairly crystallised samples. Magnetisation measurements show that the Curie temperature decreases to room temperature with t the substitution rate. The sharp and abrupt character of the 1 st order transition of MnAs-type turns to a less marked variation of the magnetic entropy in the vicinity of the transition temperature, profit made to a wider temperature range of MCE efficiency

    Introduction to half-metallic Heusler alloys: Electronic Structure and Magnetic Properties

    Full text link
    Intermetallic Heusler alloys are amongst the most attractive half-metallic systems due to the high Curie temperatures and the structural similarity to the binary semiconductors. In this review we present an overview of the basic electronic and magnetic properties of both Heusler families: the so-called half-Heusler alloys like NiMnSb and the the full-Heusler alloys like Co2_2MnGe. \textit{Ab-initio} results suggest that both the electronic and magnetic properties in these compounds are intrinsically related to the appearance of the minority-spin gap. The total spin magnetic moment MtM_t scales linearly with the number of the valence electrons ZtZ_t, such that Mt=Zt24M_t=Z_t-24 for the full-Heusler and Mt=Zt18M_t=Z_t-18 for the half-Heusler alloys, thus opening the way to engineer new half-metallic alloys with the desired magnetic properties.Comment: 28 pages, submitted for a special issue of 'Journal of Physics D: Applied Physics' on Heusler alloy

    Role of defects and disorder in the half-metallic full-Heusler compounds

    Full text link
    Half-metallic ferromagnets and especially the full-Heusler alloys containing Co are at the center of scientific research due to their potential applications in spintronics. For realistic devices it is important to control accurately the creation of defects in these alloys. We review some of our late results on the role of defects and impurities in these compounds. More precisely we present results for the following cases (i) doping and disorder in Co2_2Cr(Mn)Al(Si) alloys, (ii) half-metallic ferrimagnetism appeared due to the creation of Cr(Mn) antisites in these alloys, (iii) Co-doping in Mn2_2VAl(Si) alloys leading to half-metallic antiferromagnetism, and finally (iv) the occurrence of vacancies in the full-Heusler alloys containing Co and Mn. These results are susceptible of encouraging further theoretical and experimental research in the properties of these compounds.Comment: Chapter intended for a book with contributions of the invited speakers of the International Conference on Nanoscale Magnetism 2007. Revised version contains new figure

    Origin and Properties of the Gap in the Half-Ferromagnetic Heusler Alloys

    Full text link
    We study the origin of the gap and the role of chemical composition in the half-ferromagnetic Heusler alloys using the full-potential screened KKR method. In the paramagnetic phase the C1_b compounds, like NiMnSb, present a gap. Systems with 18 valence electrons, Z_t, per unit cell, like CoTiSb, are semiconductors, but when Z_t > 18 antibonding states are also populated, thus the paramagnetic phase becomes unstable and the half-ferromagnetic one is stabilized. The minority occupied bands accommodate a total of nine electrons and the total magnetic moment per unit cell in mu_B is just the difference between Z_t and 2×92 \times 9. While the substitution of the transition metal atoms may preserve the half-ferromagnetic character, substituting the spsp atom results in a practically rigid shift of the bands and the loss of half-metallicity. Finally we show that expanding or contracting the lattice parameter by 2% preserves the minority-spin gap.Comment: 11 pages, 7 figures New figures, revised tex

    Magnetocaloric properties of Fe_{2-x}T_xP (T = Ru and Rh) from electronic structure calculations and magnetisation measurements

    Full text link
    An analysis of the magnetocaloric properties of the pure and substituted Fe2P compounds is made based on KKR-CPA electronic structure calculations and magnetisation M(H,T) measurements. The computed electronic densities of states and magnetic moments are used to calculate both the values of the electronic and magnetic entropies, which fairly agree with the experimental findings. To enlighten the magnetic properties above Curie temperature, the paramagnetic state behaviours are simulated using the disordered local moments (DLM) concept. The KKR-CPA computations show, that in Fe2P, the Fe magnetic moment of the (3f) site disappears in the DLM state, while the moment of the (3g) site is only little lowered, comparison made with the low temperature ferromagnetic state.Comment: 17 pages, 8 figures, Submitted to J. Phys.

    A line confusion limited millimeter survey of Orion KL (I): sulfur carbon chains

    Full text link
    We perform a sensitive (line confusion limited), single-side band spectral survey towards Orion KL with the IRAM 30m telescope, covering the following frequency ranges: 80-115.5 GHz, 130-178 GHz, and 197-281 GHz. We detect more than 14 400 spectral features of which 10 040 have been identified up to date and attributed to 43 different molecules, including 148 isotopologues and lines from vibrationally excited states. In this paper, we focus on the study of OCS, HCS+, H2CS, CS, CCS, C3S, and their isotopologues. In addition, we map the OCS J=18-17 line and complete complementary observations of several OCS lines at selected positions around Orion IRc2 (the position selected for the survey). We report the first detection of OCS v2 = 1 and v3 = 1 vibrationally excited states in space and the first detection of C3S in warm clouds. Most of CCS, and almost all C3S, line emission arises from the hot core indicating an enhancement of their abundances in warm and dense gas. Column densities and isotopic ratios have been calculated using a large velocity gradient (LVG) excitation and radiative transfer code (for the low density gas components) and a local thermal equilibrium (LTE) code (appropriate for the warm and dense hot core component), which takes into account the different cloud components known to exist towards Orion KL, the extended ridge, compact ridge, plateau, and hot core. The vibrational temperature derived from OCS v2 = 1 and v3 = 1 levels is about 210 K, similar to the gas kinetic temperature in the hot core. These OCS high energy levels are probably pumped by absorption of IR dust photons. We derive an upper limit to the OC3S, H2CCS, HNCS, HOCS+, and NCS column densities. Finally, we discuss the D/H abundance ratio and infer the following isotopic abundances: 12C/13C=45+-20, 32S/34S=20+-6, 32S/33S=75+-29, and 16O/18O=250+-135.Comment: Accepted for publication in A&

    Half-metallicity and Slater-Pauling behavior in the ferromagnetic Heusler alloys

    Full text link
    Introductory chapter for the book "Halfmetallic Alloys - Fundamentals and Applications" to be published in the series Springer Lecture Notes on Physics, P. H. Dederichs and I. Galanakis (eds). It contains a review of the theoretical work on the half-metallic Heusler alloys.Comment: Introductory chapter for the book "Halfmetallic Alloys - Fundamentals and Applications" to be published in the series Springer Lecture Notes on Physics, P. H. Dederichs and I. Galanakis (eds
    corecore