85 research outputs found

    Erectile dysfunction and heart failure: the role of phosphodiesterase type 5 inhibitors

    Get PDF
    The phosphodiesterase type 5 (PDE-5) inhibitors are effective in treating erectile dysfunction (ED). ED and heart failure (HF) share similar risk factors, and commonly present together. This association has led to questions ranging from the safety and efficacy of PDE-5 inhibitors in HF patients to a possible role for this class of medication to treat HF patients with or without ED. In addition to endothelial dysfunction, there are causes of ED specific to patients with HF including low exercise tolerance, depression and HF medications. Before treating HF patients with PDE-5 inhibitors, patients should be assessed for their risk of a cardiac event during sexual activity. PDE-5 inhibitors are safe and effective in treating ED in HF patients. An improvement in erectile function by PDE-5 inhibitors was associated with an improvement in quality of life and reduction in depression. Several studies demonstrated the effect of PDE-5 inhibitors on HF per se. PDE-5 inhibitors improved endothelial dysfunction, increased exercise tolerance, decreased pulmonary vascular resistance and pulmonary artery pressure, and increased cardiac index. Several mechanisms whereby PDE-5 inhibitors improve HF have been proposed. PDE-5 inhibitors already have a role in treating primary pulmonary hypertension; however additional studies are needed to determine if they will become a standard therapy for HF patients

    Megalin/LRP2 Expression Is Induced by Peroxisome Proliferator-Activated Receptor -Alpha and -Gamma: Implications for PPARs' Roles in Renal Function

    Get PDF
    BACKGROUND: Megalin is a large endocytic receptor with relevant functions during development and adult life. It is expressed at the apical surface of several epithelial cell types, including proximal tubule cells (PTCs) in the kidney, where it internalizes apolipoproteins, vitamins and hormones with their corresponding carrier proteins and signaling molecules. Despite the important physiological roles of megalin little is known about the regulation of its expression. By analyzing the human megalin promoter, we found three response elements for the peroxisomal proliferator-activated receptor (PPAR). The objective of this study was to test whether megalin expression is regulated by the PPARs. METHODOLOGY/PRINCIPAL FINDINGS: Treatment of epithelial cell lines with PPARα or PPARγ ligands increased megalin mRNA and protein expression. The stimulation of megalin mRNA expression was blocked by the addition of specific PPARα or PPARγ antagonists. Furthermore, PPAR bound to three PPAR response elements located in the megalin promoter, as shown by EMSA, and PPARα and its agonist activated a luciferase construct containing a portion of the megalin promoter and the first response element. Accordingly, the activation of PPARα and PPARγ enhanced megalin expression in mouse kidney. As previously observed, high concentrations of bovine serum albumin (BSA) decreased megalin in PTCs in vitro; however, PTCs pretreated with PPARα and PPARγ agonists avoided this BSA-mediated reduction of megalin expression. Finally, we found that megalin expression was significantly inhibited in the PTCs of rats that were injected with BSA to induce tubulointerstitial damage and proteinuria. Treatment of these rats with PPARγ agonists counteracted the reduction in megalin expression and the proteinuria induced by BSA. CONCLUSIONS: PPARα/γ and their agonists positively control megalin expression. This regulation could have an important impact on several megalin-mediated physiological processes and on pathophysiologies such as chronic kidney disease associated with diabetes and hypertension, in which megalin expression is impaired

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Optimizing iron delivery in the management of anemia: patient considerations and the role of ferric carboxymaltose

    No full text
    Jorge Eduardo Toblli, Margarita Angerosa Nephrology Section, Department of Internal Medicine, Hospital Alemán, School of Medicine, University of Buenos Aires, Argentina Abstract: With the challenge of optimizing iron delivery, new intravenous (iv) iron–carbohydrate complexes have been developed in the last few years. A good example of these new compounds is ferric carboxymaltose (FCM), which has recently been approved by the US Food and Drug Administration for the treatment of iron deficiency anemia in adult patients who are intolerant to oral iron or present an unsatisfactory response to oral iron, and in adult patients with non-dialysis-dependent chronic kidney disease (NDD-CKD). FCM is a robust and stable complex similar to ferritin, which minimizes the release of labile iron during administration, allowing higher doses to be administered in a single application and with a favorable cost-effective rate. Cumulative information from randomized, controlled, multicenter trials on a diverse range of indications, including patients with chronic heart failure, postpartum anemia/abnormal uterine bleeding, inflammatory bowel disease, NDD-CKD, and those undergoing hemodialysis, supports the efficacy of FCM for iron replacement in patients with iron deficiency and iron-deficiency anemia. Furthermore, as FCM is a dextran-free iron–carbohydrate complex (which has a very low risk for hypersensitivity reactions) with a small proportion of the reported adverse effects in a large number of subjects who received FCM, it may be considered a safe drug. Therefore, FCM appears as an interesting option to apply high doses of iron as a single infusion in a few minutes in order to obtain the quick replacement of iron stores. The present review on FCM summarizes diverse aspects such as pharmacology characteristics and analyzes trials on the efficacy/safety of FCM versus oral iron and different iv iron compounds in multiple clinical scenarios. Additionally, the information on cost effectiveness and data on change in quality of life are also discussed. Keywords: intravenous iron, iron deficiency, anemia, ferric carboxymaltos

    Ferrous sulfate, but not iron polymaltose complex, aggravates local and systemic inflammation and oxidative stress in dextran sodium sulfate-induced colitis in rats

    No full text
    Jorge E Toblli, Gabriel Cao, Margarita Angerosa Laboratory of Experimental Medicine, Hospital Alemán, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina Background and aims: Iron deficiency is common in inflammatory bowel disease, yet oral iron therapy may worsen the disease symptoms and increase systemic and local oxidative stress. The aim of this study was to compare the effects of oral ferrous sulfate and iron polymaltose complex on inflammatory and oxidative stress markers in colitic rats.Methods: Animals were divided into four groups with ten animals each. Rats of three groups received dextran sodium sulfate to induce colitis and animals of two of these groups received 5 mg iron/kg of body weight a day, as ferrous sulfate or iron polymaltose complex, for 7 days. Gross colon anatomy, histology of colon and liver, stainings of L-ferritin, Prussian blue, hepcidin, tumor necrosis factor-α, and interleukin-6, as well serum levels of liver enzymes, inflammatory markers, and iron markers, were assessed.Results: Body weight, gross anatomy, crypt injury and inflammation scores, inflammatory parameters in liver and colon, as well as serum and liver hepcidin levels were not significantly different between colitic animals without iron treatment and colitic animals treated with iron polymaltose complex. In contrast, ferrous sulfate treatment caused significant worsening of these parameters. As opposed to ferrous sulfate, iron polymaltose complex caused less or no additional oxidative stress in the colon and liver compared to colitic animals without iron treatment.Conclusion: Iron polymaltose complex had negligible effects on colonic tissue erosion, local or systemic oxidative stress, and local or systemic inflammation, even at high therapeutic doses, and may thus represent a valuable oral treatment of iron deficiency in inflammatory bowel disease. Keywords: preclinical, oral iron treatment, tolerability, colonic tissue erosion, inflammatory bowel diseas

    New rat models of iron sucrose-induced iron overload

    No full text

    Cardiovascular, liver, and renal toxicity associated with an intravenous ferric carboxymaltose similar versus the originator compound

    No full text
    Jorge E Toblli, Gabriel Cao, Luis Rico, Margarita Angerosa Laboratory of Experimental Medicine, Hospital Alemán, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina Background: Ferric carboxymaltose (FCM) is a stable, non-dextran-based intravenous iron complex used to treat iron deficiency of various etiologies. As FCM is a nonbiological complex drug and cannot be fully characterized by physicochemical analyses, it is important to demonstrate in nonclinical models that FCM similars (FCMS) have similar biodistribution. Materials and methods: A total of 30 nonanemic rats were treated weekly with 40 mg iron/kg body weight intravenous FCM, FCMS, or isotonic saline (controls) for 4 weeks. Blood pressure, liver enzymes, and renal function were evaluated. In liver, heart, and kidney tissue, markers for oxidative stress (malondialdehyde to assess lipid peroxidation and antioxidant enzymes) and inflammation (TNFα and IL6) were measured. Iron deposits were localized. Results: The FCMS-treated group had significantly lower blood pressure, higher liver enzymes, increased proteinuria, and reduced creatinine clearance versus the FCM and control groups by day 29. Serum iron and transferrin saturation were significantly higher with FCMS versus FCM or controls. Iron deposition was altered in FCMS-treated animals, with decreased ferritin deposits and iron deposition outside the physiological storage compartments. Markers for lipid peroxidation and antioxidant-enzyme activity were significantly increased after FCMS administration versus FCM and controls, as were inflammatory markers. Conclusion: Results from this blinded nonclinical study demonstrated significant differences between the originator FCM and this FCMS. Keywords: ferric carboxymaltose, Ferinject, Orofer, follow-ons, nonbiological complex drugs, oxidative stres
    corecore