97 research outputs found
SMARTSNP, an R package for fast multivariate analyses of big genomic data
Abstract
Principal component analysis (PCA) is a powerful tool for the analysis of population structure, a genetic property that is essential to understand the evolutionary processes driving biological diversification and (pre)historical colonizations, migrations and extinctions. In the current era of highâthroughput sequencing technologies, population structure can be quantified from scores of genetic markers across hundreds to thousands of genomes. However, these big genomic datasets pose substantial computing and analytical challenges.
We present the r package smartsnp for fast and userâfriendly computation of PCA on singleânucleotide polymorphism (SNP) data. Inspired by the current fieldâstandard software EIGENSOFT, smartsnp includes appropriate SNP scaling for genetic drift and allows projection of ancient samples onto a modern genetic space while also providing permutationâbased multivariate tests for population differences in genetic diversity (both location and dispersion).
Our extensive benchmarks show that smartsnp's PCA is 2â4 times faster than EIGENSOFT's SMARTPCA algorithm across a wide range of sample and SNP sizes. All four smartsnp functions (smart_pca, smart_permanova, smart_permdisp and smart_mva) process datasets with up to 100 samples and 1 million simulated SNPs in less than 30 s and accurately recreate previously published SMARTPCA of ancientâhuman and wolf genotypes.
The package smartsnp provides fast and robust multivariate ordination and hypothesis testing for big genomic data that is also suitable for ancient and lowâcoverage modern DNA. The simple implementation should appeal to biological conservation, evolutionary, ecological and (palaeo)genomic researchers, and be useful for phenotype, ancestry and lineage studies
Neuronal Distortions of Reward Probability without Choice
Reward probability crucially determines the value of outcomes. A basic phenomenon, defying explanation by traditional decision theories, is that people often overweigh small and underweigh large probabilities in choices under uncertainty. However, the neuronal basis of such reward probability distortions and their position in the decision process are largely unknown. We assessed individual probability distortions with behavioral pleasantness ratings and brain imaging in the absence of choice. Dorsolateral frontal cortex regions showed experience dependent overweighting of small, and underweighting of large, probabilities whereas ventral frontal regions showed the opposite pattern. These results demonstrate distorted neuronal coding of reward probabilities in the absence of choice, stress the importance of experience with probabilistic outcomes and contrast with linear probability coding in the striatum. Input of the distorted probability estimations to decision-making mechanisms are likely to contribute to well known inconsistencies in preferences formalized in theories of behavioral economics
Recommended from our members
Multiple value signals in dopaminergic midbrain and their role in avoidance contexts
The role of dopaminergic brain regions in avoidance behaviour is unclear. Active avoidance requires motivation, and the latter is linked to increased activity in dopaminergic regions. However, avoidance is also often tethered to the prospect of punishment, a state typically characterized by below baseline levels of dopaminergic function. Avoidance has been considered from the perspective of two-factor theories where the prospect of safety is considered to act as a surrogate for reward, leading to dopamine release and enhanced motivational drive. Using fMRI we investigated predictions from two-factor theory by separating the neural representation of a conventional net expected value, which is negative in the case of avoidance, from an adjusted expected value which factors in a possibility of punishment and is larger for both big rewards and big (predictably avoidable) punishments. We show that neural responses in ventral striatum and ventral tegmental area/substantial nigra (VTA/SN) covaried with net expected value. Activity in VTA/SN also covaried with an adjusted expected value, as did activity in anterior insula. Consistent with two-factor theory models, the findings indicate that VTA/SN and insula process an adjusted expected value during avoidance behaviour
A review and analysis of the relationship between neuropsychological measures and DAT1 in ADHD
Contains fulltext :
69105.pdf (publisher's version ) (Closed access)Meta-analyses indicate that the gene coding for the dopamine transporter (DAT1 or SLC6A3) is associated with an increased risk for ADHD. The mechanisms of this gene for ADHD are unclear. We systematically reviewed studies linking the VNTR in the 3' UTR of the DAT1 to neurophysiological and neuropsychological measures. In addition, a broad set of executive/cognitive and motor tests was administered to 350 children (5-11 years) and adolescents (11-19 years) with ADHD and 195 non-affected siblings. Two VNTRs (in intron 8 and the 3' UTR) and four SNPs (two 5' and two 3') in DAT1 were genotyped. The effect of the polymorphisms on neuropsychological functioning was studied. The review indicated that the majority of studies did not find a relation between DAT1 and neurophysiological or neuropsychological measures. In our sample, several of the polymorphisms of DAT1 were associated with ADHD and ADHD was associated with impaired neuropsychological functioning. However, none of the DAT1 polymorphisms was convincingly associated with neuropsychological dysfunctioning. This suggests that the effect of DAT1 on ADHD was not mediated by neuropsychological performance. However, since DAT1 is mainly expressed in the striatum and not the prefrontal cortex, it may influence striatum-related functions (such as delay aversion) more heavily than prefrontal related functions (such as executive functions). Associations of DAT1 with ADHD were only found in adolescents, which may suggest that DAT1 mainly exerts its effect in adolescence, and/or that having a more persistent form of ADHD may mark a more severe or homogeneous genetic form of the disorder
Polymorphisms in the interleukin-10 gene cluster are possibly involved in the increased risk for major depressive disorder
<p>Abstract</p> <p>Background</p> <p>Innate immune inflammatory response is suggested to have a role in the pathogenesis of major depressive disorder (MDD). Interleukin (IL)-10 family cytokines IL-10, IL-19, IL-20, and IL-24 are all implicated in the inflammatory processes and polymorphisms in respective genes have been associated with various immunopathological conditions. This study was carried out to investigate whether single-nucleotide polymorphisms (SNPs) in these genes are also associated with MDD.</p> <p>Methods</p> <p>Case-control association study was performed with seven SNPs from the <it>IL10 </it>gene cluster. 153 patients with MDD and 277 healthy control individuals were recruited.</p> <p>Results</p> <p>None of the selected SNPs were individually associated with MDD. The linkage disequilibrium (LD) analysis indicated the existence of two recombination sites in the <it>IL10 </it>gene cluster, thus confirming the formerly established LD pattern of this genomic region. This also created two haplotype blocks, both consisting of three SNPs. Additionally, the haplotype analysis detected a significantly higher frequency of block 2 (<it>IL20 </it>and <it>IL24 </it>genes) haplotype TGC in the patients group compared to healthy control individuals (P = 0.0097).</p> <p>Conclusion</p> <p>Our study established increased risk for MDD related to the <it>IL20 </it>and <it>IL24 </it>haplotype and suggests that cytokines may contribute to the pathogenesis of MDD. Since none of the block 2 SNPs were individually associated with MDD, it is possible that other polymorphisms linked to them contribute to the disease susceptibility. Future studies are needed to confirm the results and to find the possible functional explanation.</p
Recommended from our members
Dopamine Increases a Value-Independent Gambling Propensity
Although the impact of dopamine on reward learning is well documented, its influence on other aspects of behavior remains the subject of much ongoing work. Dopaminergic drugs are known to increase risk-taking behavior, but the underlying mechanisms for this effect are not clear. We probed dopamineâs role by examining the effect of its precursor L-DOPA on the choices of healthy human participants in an experimental paradigm that allowed particular components of risk to be distinguished. We show that choice behavior depended on a baseline (ie, value-independent) gambling propensity, a gambling preference scaling with the amount/variance, and a value normalization factor. Boosting dopamine levels specifically increased just the value-independent baseline gambling propensity, leaving the other components unaffected. Our results indicate that the influence of dopamine on choice behavior involves a specific modulation of the attractiveness of risky optionsâa finding with implications for understanding a range of reward-related psychopathologies including addiction
Data from: High rate of translocation-based gene birth on the Drosophila Y chromosome
The Y chromosome is a unique genetic environment defined by a lack of recombination and male-limited inheritance. The Drosophila Y chromosome has been gradually acquiring genes from the rest of the genome, with only seven Y-linked genes being gained over the past 63 million years (0.12 gene gains per million years). Using a next-generation sequencing (NGS)-powered genomic scan, we show that gene transfers to the Y chromosome are much more common than previously suspected: at least 25 have arisen across three Drosophila species over the past 5.4 million years (1.67 per million years for each lineage). The gene transfer rate is significantly lower in Drosophila melanogaster than in the Drosophila simulans clade, primarily due to Y-linked retrotranspositions being significantly more common in the latter. Despite all Y-linked gene transfers being evolutionarily recent (<1 million years old), only three showed evidence for purifying selection (Ï â€ 0.14). Thus, although the resulting Y-linked functional gene acquisition rate (0.25 new genes per million years) is double the longer-term estimate, the fate of most new Y-linked genes is defined by rapid degeneration and pseudogenization. Our results show that Y-linked gene traffic, and the molecular mechanisms governing these transfers, can diverge rapidly between species, revealing the Drosophila Y chromosome to be more dynamic than previously appreciated. Our analytical method provides a powerful means to identify Y-linked gene transfers and will help illuminate the evolutionary dynamics of the Y chromosome in Drosophila and other species
Data from: High rate of translocation-based gene birth on the Drosophila Y chromosome
The Y chromosome is a unique genetic environment defined by a lack of recombination and male-limited inheritance. The Drosophila Y chromosome has been gradually acquiring genes from the rest of the genome, with only seven Y-linked genes being gained over the past 63 million years (0.12 gene gains per million years). Using a next-generation sequencing (NGS)-powered genomic scan, we show that gene transfers to the Y chromosome are much more common than previously suspected: at least 25 have arisen across three Drosophila species over the past 5.4 million years (1.67 per million years for each lineage). The gene transfer rate is significantly lower in Drosophila melanogaster than in the Drosophila simulans clade, primarily due to Y-linked retrotranspositions being significantly more common in the latter. Despite all Y-linked gene transfers being evolutionarily recent (<1 million years old), only three showed evidence for purifying selection (Ï â€ 0.14). Thus, although the resulting Y-linked functional gene acquisition rate (0.25 new genes per million years) is double the longer-term estimate, the fate of most new Y-linked genes is defined by rapid degeneration and pseudogenization. Our results show that Y-linked gene traffic, and the molecular mechanisms governing these transfers, can diverge rapidly between species, revealing the Drosophila Y chromosome to be more dynamic than previously appreciated. Our analytical method provides a powerful means to identify Y-linked gene transfers and will help illuminate the evolutionary dynamics of the Y chromosome in Drosophila and other species
Frequency data and SweepFinder2 output
This directory contains the input SFS (site frequency spectrum) data for each of the populations, as well as SweepFinder2 output CLR (composite likelihood ratio) for each population split by chromosome.</p
- âŠ