46 research outputs found
Carbon-modified titanium oxide materials for photocatalytic water and air decontamination
Titanium oxide-based materials with different physical and chemical features were synthetized aiming at removing organic pollutants from both water and air media. The materials were produced employing two different heating methodologies (thermal, T and hydrothermal, H) at distinct temperatures resulting in porous materials. These materials were also modified with either graphene oxide (GO) or carbon nanotubes (CNT), using an in-situ approach. All materials were tested as photocatalysts using ultra-violet (UV), visible (Vis) and solar radiation. Rhodamine B (RhB) and benzene were used as representative pollutants in water and air, respectively.
The addition of carbon to the catalysts improved the removal of both pollutants. In the case of the photocatalytic degradation of rhodamine B, under both UV and Vis light, it was found that, the materials containing carbon nanostructures allowed the highest degradation degree, while the photosensitisation phenomenon became negligible. The best catalyst is the one containing CNT (2.98 wt% of C) and thermally treated at 300 °C (T300_CNT). This material showed higher degradation ability than the commercial TiO2 nanopowder Degussa P25 (P25) under Vis light. Regarding benzene removal, the samples thermally treated at 300 °C and modified with CNT and GO (T300_CNT and T300_GO, respectively) outperformed Degussa P25. The former material was successfully reused in the photocatalytic degradation of benzene over 6 consecutive cycles.publishe
Sol gel graphene/TiO2 nanoparticles for the photocatalytic-assisted sensing and abatement of NO2
Abstract Human exposure to volatile organic compounds and NO2 can lead to health problems, therefore strategies to mitigate against the risks are required. Abatement and sensing are approaches which could both neutralise and monitor these species thus providing a safer environment and warning occupants of harmful levels. This paper presents pure TiO2 and TiO2/graphene hybrids synthesized through a sol-gel route. Electron optical, helium ion microscopy, X-ray diffraction and spectroscopic methods have been applied to elucidate the physical and chemical behaviour. NO2 sensing properties of TiO2/graphene hybrids formed by the addition of graphene to the reaction vessel prior to initiating the sol gel reaction followed by annealing (GTiO2S), and an alternative manufacturing method involving the addition of graphene to TiO2 nanoparticles which had already been annealed (GTiO2M) were compared and evaluated. A conductometric sensor based on TiO2/graphene prepared using material GTiO2S showed a higher response to NO2 compared to sensors based on pure TiO2 and TiO2/graphene prepared with material GTiO2M. Under UV irradiation generated by a low power LED, the sensor showed a remarkably enhanced response to 1750 ppb NO2, about double the response in the dark, and a limit of detection of about 50 ppb of NO2 (Signal/Noise = 3). Photocatalytic tests to assess the degradation of NOx showed that TiO2/graphene hybrids using material GTiO2S were the most active amongst the whole series of TiO2-based materials. Our data highlights the unique characteristics of material GTiO2S TiO2/graphene and the suitability for multi-purpose applications in the field of environmental monitoring and remediation. The capability of the material for both sensing and abatement of NOx could be exploited to offer a safer environment through providing a warning of the presence of NOx whilst also reducing levels
Photocatalytic Lime Render for Indoor and Outdoor Air Quality Improvement
This article reports a novel photocatalytic lime render for indoor and outdoor air quality improvement that is composed of a lime binder and doped TiO2 (KRONOClean 7000®) nanoparticles. These nanoparticles were distributed throughout the bulk of the finishing render, instead of as a thin coating, thus ensuring the durability of the photocatalytic properties upon superficial damage. The physical properties of these renders were not affected by the addition of nanoparticles except in the case of surface area, which increased significantly. In terms of their photocatalytic activity, these novel lime renders were shown to degrade up to 12% NOx under UV light and up to 11% formaldehyde under visible light.This research was funded by the European Union’s Seventh Framework Programme for
research, technological development, and demonstration under the Grant Agreement No. 609234
related to the ECO-SEE project: “Eco-innovative, Safe and Energy Efficient wall panels and materials
for a healthier indoor environment”
This work was partly developed within the scope of the project CICECO–Aveiro Institute of Materials, UIDB/50011/2020 & UIDP/50011/2020, financed by national funds through the FCT/MEC and when appropriate co-financed by FEDER under the PT2020 Partnership Agreement.
David Maria Tobaldi is overly grateful to Portuguese national funds (OE), through FCT, I.P., in the scope of the framework contract foreseen in the numbers 4, 5 and 6 of the article 23, of the Decree-Law 57/2016, of 29 August, changed by Law 57/2017, of 19 July
Photocatalytic lime render for indoor and outdoor air quality improvement
This article reports a novel photocatalytic lime render for indoor and outdoor air quality improvement that is composed of a lime binder and doped TiO2 (KRONOClean 7000®) nanoparticles. These nanoparticles were distributed throughout the bulk of the finishing render, instead of as a thin coating, thus ensuring the durability of the photocatalytic properties upon superficial damage. The physical properties of these renders were not affected by the addition of nanoparticles except in the case of surface area, which increased significantly. In terms of their photocatalytic activity, these novel lime renders were shown to degrade up to 12% NOx under UV light and up to 11% formaldehyde under visible light
Materiali Ceramici per Edilizia con FunzionalitĂ Fotocatalitica
This thesis wad aimed at the study and application of titanium dioxide photocatalytic activity on ceramic materials. As a matter of fact, photocatalysis is a very promising method to face most of the problems connected with the increasing environmental pollution. Furthermore, titanium dioxide, in its anatase crystallographic phase, is one of the most investigated photocatalytic material and results to be perfectly compatible with silicate body mixes.
That goal was pursued by two different strategies:
1. the addition to a body mix used for heavy clay products of several titania powders, with different mean crystallite size, surface area, morphology and anatase/rutile ratio and a titania nanosuspension as well. The titania addition followed two procedures: bulk and spray addition over the ceramic samples surface. Titania was added in two different percentages: 2.5 and 7.5 wt.% in both of the methods. The ceramic samples were then fired at three maximum temperatures: 900, 950 and 1000 °C.
Afterwards, the photocatalytic activity of the prepared ceramic samples was evaluated by following the degradation of an organic compound in aqueous medium, under UV radiation. The influence of titania morphological characteristics on the photoactivity of the fired materials was studied by means of XRD and SEM observations.
The ceramic samples, sprayed with a slip containing 7.5 wt.% of titania powder and fired at 900 °C, have the best photoactivity, with a complete photo-decomposition of the organic compound. At 1000 °C no sample acted as a photocatalyst due to the anatase-to-rutile phase transformation and to the reaction between titania and calcium and iron oxides in the raw materials.
2. The second one foresaw the synthesis of TiO2-SiO2 solid solutions, using the following stoichiometry: Ti1-xSixO2 where x = 0, 0.1, 0.3 and 0.5 atoms per formula unit (apfu). The mixtures were then fired following two thermal cycles, each with three maximum temperatures.
The effect of SiO2 addition into the TiO2 crystal structure and, consequently, on its photocatalytic activity when fired at high temperature, was thoroughly investigated by means of XRD, XPS, FE-SEM, TEM and BET analysis. The photoactivity of the prepared powders was assessed both in gas and liquid phase.
Subsequently, the TiO2-SiO2 solid solutions, previously fired at 900 °C, were sprayed over the ceramic samples surface in the percentage of 7.5 wt.%. The prepared ceramic samples were fired at 900 and 1000 °C.
The photocatalytic activity of the ceramic samples was evaluated in liquid phase. Unfortunately, that samples did not show any appreciable photoactivity. In fact, samples fired at 900 °C showed a pretty low photoactivity, while the one fired at 1000 °C showed no photoactivity at all. This was explained by the excessive coarsening of titania particles.
To summarise, titania particle size, more than its crystalline phase, seems to have a relevant role in the photocatalytic activity of the ceramic samples
Tailoring the crystalline and amorphous phase ratios of TiO2 through the use of organic additives during hydrothermal synthesis
The photocatalytic properties of TiO2 are primarily determined by its crystallinity and crystalline phase ratios. To improve the photocatalytic properties of TiO2, greater control over the formation of crystalline and amorphous phases during synthesis is therefore required. In this study, we demonstrate how the addition of minute amounts of three organic compounds (isopropanol, acetone and acetic acid) during hydrothermal treatment affects the amorphous and crystalline phase ratios: the addition of isopropanol or acetone accelerates the phase transition from anatase and brookite to rutile, whereas the addition of acetic acid inhibits the transformation of anatase to rutile, increasing the content of amorphous phase compared to samples where no organic compound was added. We show that the combination of the organic compound added, along with the duration of the hydrothermal treatment, can be used to tailor the phase composition of TiO2, so as to obtain either: i) TiO2 with a high content of both rutile and amorphous phase, ii) TiO2 with a high rutile content and iii) TiO2 with different ratios of all four phases, when the duration of synthesis is short (2–4 h). The materials synthesized exhibited high photocatalytic activity (in most cases higher than P25), which is attributed to the beneficial phase composition and high specific surface area
Innovative Recycling of Lime Slaker Grits from Paper-Pulp Industry Reused as Aggregate in Ambient Cured Biomass Fly Ash-Based Geopolymers for Sustainable Construction Material
Lime slaker grits and biomass fly ash are solid wastes produced by the Kraft paper-pulp industry that are commonly disposed of in landfill. However, recent studies and European regulations discourage such disposal practices. This work investigates an alternative and innovative way to recycle and reuse these wastes in the production of green geopolymeric mortars intended for application in the construction industry. Here, biomass fly ash was used as the main source of alumino-silicate in the binder precursor (70 wt.% substitution to metakaolin), and grits (ranging from 1-12.5 mm, as provided by the industry) were reused as aggregate. Aggregate granulometry was also completed by using a commercial natural siliceous sand (<1 mm). Mortars using sand only were prepared for comparative reasons. The implemented mix was designed to investigate the influence of the grits on the mortar's properties such as its binder/aggregate ratio, workability, bulk density, water sorptivity, and compressive strength. At the same time, waste reuse was analysed in light of its limitations and potentialities. Moreover, in the pursuit of sustainability, the manufacturing process that was followed was highly cost-effective in ambient curing conditions (20 degrees C, 65% RH), which avoided the use of any external source of energy as commonly used in geopolymers processing. The achieved results proved that the combined use of these wastes, which to date has hardly been explored, along with ambient manufacturing conditions increases the material sustainability. The produced mortars are suitable for innovative applications in various fields, with a particular focus on construction and contribute to the circular economy
UV / Visible Sol Gel W-TiO2 photocatalytic coatings for interior building surfaces
This article describes the synthesis of tungsten doped (W-TiO2) nanoparticles and their incorporation into a coating to improve the air quality inside buildings. W-TiO2 was prepared using a sol-gel synthesis route incorporating 1%, 2.5% and 3% tungsten in TiO2. Coatings containing the nanoparticles were produced using a water/alcohol liquid phase containing a polyurethane binder and applied to the surface of medium density fibreboard (MDF). Photocatalytic activity of unbound nanoparticles was studied using methylene blue degradation to evaluate liquid/solid interface reactions and NOx degradation to study gas/solid interfacial reactions. The coatings containing the nanoparticles were applied onto the surface of MDF and evaluated using Ink Intelligent indicator dyes. In the tests photocatalytic activity under visible light of all W-TiO2 concentrations exhibited a higher activity compared to the commercially available Degussa P25. This paper has demonstrated for the first time that polyurethane W-TiO2 coatings can be effectively applied to MDF and exhibit activity in visible light
TiO2 Surface Hybridisation with Noble Metals (Ag and CuxO) for Solar De-NOx and VOC Removal
Indoor and outdoor air pollution
remains a major health risk for human beings. Nitrogen oxides and volatile
organic compounds are amongst the major pollutant found outdoor. Thus, actions
to diminish such risks and to provide safer outdoor / indoor environment are
required. In this research work, we have decorated the surface of TiO2
with noble-metal oxides (Ag and/or CuxO)
to improve the photocatalytic performances (removal of nitrogen oxides and
benzene) under simulated solar-light irradiation. By means of advanced X-ray
methods it has been shown that noble metals did not enter the TiO2
crystal structure, although they retarded the anatase-to-rutile phase
transition and crystal growth.
Photocatalytic activity was assessed
in the gas-solid phase, monitoring the degradation of NOx and benzene, using a lamp simulating the solar
radiation. Results showed that TiO2 modified with an Ag:Cu molar ratio
equal to 1:1 (with Ag+Cu = 0.5+0.5 mol% = 1 mol%), was that exhibiting best
de-NOx and benzene removal
performances.</p
Synthesis of Co-TiO2 Nanostructured Photo-Catalytic Coatings for MDF Substrates
Aggregates of undoped and cobalt-doped TiO2 nanoparticles were prepared through a sol gel method followed by annealing at 450 degrees C to obtain an anatase structure. The resulting aggregates were characterized using field emission scanning electron microscopy, scanning electron microscopy with energy dispersive X-ray analysis and Raman spectroscopy. Photocatalytic (PC) activity of the annealed nanostructures was evaluated through monitoring the degradation of a methylene blue solution containing the aggregated nanoparticles and comparisons made to compare to pure TiO2 (P25) and carbon doped TiO2 (Kronoclean 7000). Degradation under UV radiation (375-385nm), green light (525-535nm) and white light (5200K) was determined quantitatively using a UV-Vis spectrophotometer to measure the decreasing intensity of the blue colour. The Co-TiO2, Kronoclean 7000 and undoped nanoparticles were then applied to the surface of MDF substrates. Experimental results show that in all cases nanostructured particles aggregated to form micro-grains. Furthermore the photocatalytic activity tests indicated a change in the band gap of the Co-doped particles since the photocatalytic activity was greater under visible light compared to a pure TiO2. Preliminary tests on the coatings indicated photocatalytic activity in all the substrates studied. The results suggest that the incorporation of Co-doped TiO2 nanoparticles in coatings has the potential for improving indoor air quality by decomposing volatile organic compounds (VOCs) using both visible and UV light