100 research outputs found

    Luteinizing hormone and androstendione are independent predictors of ovulation after laparoscopic ovarian drilling: a retrospective cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Our objective was to investigate luteinizing hormone, follicle-stimulating hormone, testosterone, and androstenedione as predicitve markers for ovulation after laparoscopic ovarian drilling.</p> <p>Methods</p> <p>We retrospectively analyzed 100 clompihen-resistant patients with the polycystic ovary syndrome who underwent laparoscopic ovarian drilling at our department. The main outcome measure was spontaneous postoperative ovulation within three months after laparoscopic ovarian drilling. In order to predict spontaneous ovulation, we tested the following parameters by use of a univariate followed by a multivariate regression model: Preoperative serum levels of LH, FSH, testosterone, and androstenedione as well as patients' age and body mass index. In addition, we focused on pregnancy and life birth rates.</p> <p>Results</p> <p>Spontaneous ovulation was documented in 71/100 patients (71.0%). In a univariate and multivariate analysis, luteinizing hormone (OR 1.58, 95%CI: 1.30-1.92) and androstenedione (OR 3.03, 95%CI: 1.20-7.67), but not follicle-stimulating hormone and testosterone were independent predictors of ovulation. Using a cut-off for luteinizing hormone and androstenedione of 12.1 IU/l and 3.26 ng/ml, respectively, spontaneous ovulation was observed in 63/70 (90.0%) and 36/42 patients (85.7%) with elevated and in 8/30 (26.7%) and 35/58 (60.3%) patients with low luteinizing hormone and androstenedione levels, respectively. The sensitivity, specificity, positive and negatvie predictive values for luteinizing hormone and androstendione as predictors of spontaneous ovulation after ovarian drilling were 88.7% (95%CI: 79.0-95.0%), 75.9% (95%CI: 56.5-89.7%), 90.0% (95%CI: 80.5-95.8%), and 73.3% (95%CI: 54.1-87.7%) for luteinizing hormone, and 50.7% (95%CI: 38.6-62.8%), 79.3% (95%CI: 60.3-92.0%), 85.7% (95%CI: 71.5-94.6%), and 39.7% (95%CI: 27.0-53.4%) for androstenedione, respectively. Complete one-year follow-up was available for 74/100 patients (74%). We observed a one-year pregnancy rate and a resulting life-birth rate of 61% and 51%, respectively.</p> <p>Conclusions</p> <p>Luteinizing hormone and androstenedione prior to laparoscopic ovarian drilling are independent predictors of spontaneous ovulation within three months of surgery. We suggest to preferentially performing laparoscopic ovarian drilling in patients with high luteinizing hormone and androstenedione levels.</p

    Mutant K-ras oncogene regulates steroidogenesis of normal human adrenocortical cells by the RAF-MEK-MAPK pathway

    Get PDF
    The result of our previous study has shown that the K-ras mutant (pK568MRSV) transfected human adrenocortical cells can significantly increase cortisol production and independently cause cell transformation. The aim of this study is to investigate the effect of the active K-ras oncogene on the cortisol production in normal human adrenocortical cells. First we used isopropyl thiogalactoside to induce the inducible mutant K-ras expression plasmid, pK568MRSV, in the stable transfected human adrenocortical cells. The result showed that the increase of RasGTP levels in transfected cells was time-dependent after isopropyl thiogalactoside induction. Additionally, results from Western blot analysis revealed significant elevation in phosphorylation of c-Raf-1 and Mitogen-activated protein kinase. We also detected the levels of mRNA encoding Cholesterol side-chain cleavage enzyme (P450SCC), 17α-Hydroxylase/17,20-lyase (P450c17) and 3β-Hydroxysteroid dehydrogenase (3βHSD) were increased in human adrenocortical cells transfected with mutant K-ras after IPTG treatment. The increase of mRNA amount in P450scc P450c17 and 3βHSD and the elevation of cortisol level were inhibited with a pretreatment of PD098059, a specific extracellular signal-regulated kinase inhibitor. In our previous report, we proved that lovastatin, a pharmacological inhibitor of p21ras function, also reversed the increase of cortisol level in mutant K-ras stably transfected human adrenocortical cells. Taken together, these findings proved that the active mutant Ras enhanced not only cell proliferation but also steroidogenesis in steroidogenic phenotype cells by activating Raf-MEK-MAPK related signal transduction pathway. Therefore, we believe that K-ras mutants influence regulation of steroidogenesis in adrenocortical cells through RAF-MEK-MAPK pathway

    Sequential Metabolism of 7-Dehydrocholesterol to Steroidal 5,7-Dienes in Adrenal Glands and Its Biological Implication in the Skin

    Get PDF
    Since P450scc transforms 7-dehydrocholesterol (7DHC) to 7-dehydropregnenolone (7DHP) in vitro, we investigated sequential 7DHC metabolism by adrenal glands ex vivo. There was a rapid, time- and dose-dependent metabolism of 7DHC by adrenals from rats, pigs, rabbits and dogs with production of more polar 5,7-dienes as detected by RP-HPLC. Based on retention time (RT), UV spectra and mass spectrometry, we identified the major products common to all tested species as 7DHP, 22-hydroxy-7DHC and 20,22-dihydroxy-7DHC. The involvement of P450scc in adrenal metabolic transformation was confirmed by the inhibition of this process by DL-aminoglutethimide. The metabolism of 7DHC with subsequent production of 7DHP was stimulated by forscolin indicating involvement of cAMP dependent pathways. Additional minor products of 7DHC metabolism that were more polar than 7DHP were identified as 17-hydroxy-7DHP (in pig adrenals but not those of rats) and as pregna-4,7-diene-3,20-dione (7-dehydroprogesterone). Both products represented the major identifiable products of 7DHP metabolism in adrenal glands. Studies with purified enzymes show that StAR protein likely transports 7DHC to the inner mitochondrial membrane, that 7DHC can compete effectively with cholesterol for the substrate binding site on P450scc and that the catalytic efficiency of 3βHSD for 7DHP (Vm/Km) is 40% of that for pregnenolone. Skin mitochondria are capable of transforming 7DHC to 7DHP and the 7DHP is metabolized further by skin extracts. Finally, 7DHP, its photoderivative 20-oxopregnacalciferol, and pregnenolone exhibited biological activity in skin cells including inhibition of proliferation of epidermal keratinocytes and melanocytes, and melanoma cells. These findings define a novel steroidogenic pathway: 7DHC→22(OH)7DHC→20,22(OH)27DHC→7DHP, with potential further metabolism of 7DHP mediated by 3βHSD or CYP17, depending on mammalian species. The 5–7 dienal intermediates of the pathway can be a source of biologically active vitamin D3 derivatives after delivery to or production in the skin, an organ intermittently exposed to solar radiation

    Ovarian cyst, cervical cyst or fundal fibroid

    No full text
    corecore