4 research outputs found

    Anopheles gambiae populations from Burkina Faso show minimal delayed mortality after exposure to insecticide-treated nets

    Get PDF
    Background: The efficacy of long-lasting insecticidal nets (LLINs) in preventing malaria in Africa is threatened by insecticide resistance. Bioassays assessing 24-hour mortality post-LLIN exposure have established that resistance to the concentration of pyrethroids used in LLINs is widespread. However, although mosquitoes may no longer be rapidly killed by LLIN exposure, a delayed mortality effect has been shown to reduce the transmission potential of mosquitoes exposed to nets. This has been postulated to partially explain the continued efficacy of LLINs against pyrethroid-resistant populations. Burkina Faso is one of a number of countries with very high malaria burdens and pyrethroid-resistant vectors, where progress in controlling this disease has stagnated. We measured the impact of LLIN exposure on mosquito longevity in an area of the country with intense pyrethroid resistance to establish whether pyrethroid exposure was still shortening mosquito lifespan in this setting. Methods: We quantified the immediate and delayed mortality effects of LLIN exposure using standard laboratory WHO cone tests, tube bioassays and experimental hut trials on Anopheles gambiae populations originating from the Cascades region of Burkina Faso using survival analysis and a Bayesian state-space model. Results: Following single and multiple exposures to a PermaNet 2.0 LLIN only one of the four mosquito populations tested showed evidence of delayed mortality. No delayed mortality was seen in experimental hut studies using LLINs. A delayed mortality effect was only observed in WHO tube bioassays when deltamethrin concentration was increased above the standard diagnostic dose. Conclusions: As mosquito pyrethroid-resistance increases in intensity, delayed effects from LLIN exposure are substantially reduced or absent. Given the rapid increase in resistance occurring in malaria vectors across Africa it is important to determine whether the failure of LLINs to shorten mosquito lifespan is now a widespread phenomenon as this will have important implications for the future of this pivotal malaria control tool

    A population genomic unveiling of a new cryptic mosquito taxon within the malaria-transmitting Anopheles gambiae complex.

    Get PDF
    The Anopheles gambiae complex consists of multiple morphologically indistinguishable mosquito species including the most important vectors of the malaria parasite Plasmodium falciparum in sub-Saharan Africa. Nine cryptic species have been described so far within the complex. The ecological, immunological and reproductive differences among these species will critically impact population responses to disease control strategies and environmental changes. Here, we examine whole-genome sequencing data from a longitudinal study of putative A. coluzzii in western Burkina Faso. Surprisingly, many specimens are genetically divergent from A. coluzzii and all other Anopheles species and represent a new taxon, here designated Anopheles TENGRELA (AT). Population genetic analysis suggests that the cryptic GOUNDRY subgroup, previously collected as larvae in central Burkina Faso, represents an admixed population descended from both A. coluzzii and AT. AT harbours low nucleotide diversity except for the 2La inversion polymorphism which is maintained by overdominance. It shows numerous fixed differences with A. coluzzii concentrated in several regions reflecting selective sweeps, but the two taxa are identical at standard diagnostic loci used for taxon identification, and thus, AT may often go unnoticed. We present an amplicon-based genotyping assay for identifying AT which could be usefully applied to numerous existing samples. Misidentified cryptic taxa could seriously confound ongoing studies of Anopheles ecology and evolution in western Africa, including phenotypic and genotypic surveys of insecticide resistance. Reproductive barriers between cryptic species may also complicate novel vector control efforts, for example gene drives, and hinder predictions about evolutionary dynamics of Anopheles and Plasmodium. [Abstract copyright: © 2020 John Wiley & Sons Ltd.

    Impact of physicochemical parameters of Aedes aegypti breeding habitats on mosquito productivity and the size of emerged adult mosquitoes in Ouagadougou City, Burkina Faso

    Get PDF
    Background: Outbreaks of dengue fever caused by viruses transmitted by Aedes aegypti mosquitoes are repeated occurrences in West Africa. In recent years, Burkina Faso has experienced major dengue outbreaks, most notably in 2016 and 2017 when 80% of cases were recorded in Ouagadougou City (Central Health Region). In order to better understand the ecology of this vector and to provide information for use in developing control measures, a study on the characteristics of Aedes container breeding sites and the productivity of such sites, as measured by the abundance of immature stages and resultant adult body size, was undertaken in three health districts (Baskuy, Bogodogo and Nongremassom) of Ouagadougou. Methods: Adult mosquitoes were collected indoors and outdoors in 643 households during the rainy season from August to October 2018. The presence of water containers was systematically recorded and the containers examined for the presence or absence of larvae. Characteristics of the container breeding sites, including size of the container and temperature, pH and conductivity of the water contained within, were recorded as well as the volume of water. Traditional Stegomyia indices were calculated as quantitative indicators of the risk of dengue outbreaks; generalised mixed models were fitted to larval and pupal densities, and the contribution of each covariate to the model was evaluated by the Z-value and associated P-value. Results: A total of 1061 container breeding sites were inspected, of which 760 contained immature stages of Ae. aegypti (‘positive’ containers). The most frequent container breeding sites found in each health district were tyres and both medium (buckets/cans/pots) and large (bins/barrels/drums) containers; these containers were also the most productive larval habitats and the types that most frequently tested positive. Of the Stegomyia indices, the Breteau, House and Container indices exceeded WHO dengue risk thresholds. Generalised linear mixed models showed that larval and pupal abundances were associated with container type, physicochemical characteristics of the water and collection month, but there were significant differences among container types and among health districts. Aedes aegypti body size was positively associated with type and diameter of the container, as well as with electrical conductivity of the water, and negatively associated with pH and temperature of the water and with the level of exposure of the container to sunlight. Conclusion: This study provides data on putative determinants of the productivity of habitats regarding Ae. aegypti immature stages. These data are useful to better understand Ae. aegypti proliferation. The results suggest that identifying and targeting the most productive container breeding sites could contribute to dengue vector control strategies in Burkina Faso

    Sympatric Populations of the Anopheles gambiae Complex in Southwest Burkina Faso Evolve Multiple Diverse Resistance Mechanisms in Response to Intense Selection Pressure with Pyrethroids

    Get PDF
    Pyrethroid resistance in the Anopheles vectors of malaria is driving an urgent search for new insecticides that can be used in proven vector control tools such as insecticide treated nets (ITNs). Screening for potential new insecticides requires access to stable colonies of the predominant vector species that contain the major pyrethroid resistance mechanisms circulating in wild populations. Southwest Burkina Faso is an apparent hotspot for the emergence of pyrethroid resistance in species of the Anopheles gambiae complex. We established stable colonies from larval collections across this region and characterised the resistance phenotype and underpinning genetic mechanisms. Three additional colonies were successfully established (1 An. coluzzii, 1 An. gambiae and 1 An. arabiensis) to add to the 2 An. coluzzii colonies already established from this region; all 5 strains are highly resistant to pyrethroids. Synergism assays found that piperonyl butoxide (PBO) exposure was unable to fully restore susceptibility although exposure to a commercial ITN containing PBO resulted in 100% mortality. All colonies contained resistant alleles of the voltage gated sodium channel but with differing proportions of alternative resistant haplotypes. RNAseq data confirmed the role of P450s, with CYP6P3 and CYP6Z2 elevated in all 5 strains, and identified many other resistance mechanisms, some found across strains, others unique to a particular species. These strains represent an important resource for insecticide discovery and provide further insights into the complex genetic changes driving pyrethroid resistance
    corecore