42 research outputs found

    Modeling tourists' personality in recommender systems: how does personality influence preferences for tourist attractions?

    Get PDF
    Personalization is increasingly being perceived as an important factor for the effectiveness of Recommender Systems (RS). This is especially true in the tourism domain, where travelling comprises emotionally charged experiences, and therefore, the more about the tourist is known, better recommendations can be made. The inclusion of psychological aspects to generate recommendations, such as personality, is a growing trend in RS and they are being studied to provide more personalized approaches. However, although many studies on the psychology of tourism exist, studies on the prediction of tourist preferences based on their personality are limited. Therefore, we undertook a large-scale study in order to determine how the Big Five personality dimensions influence tourists' preferences for tourist attractions, gathering data from an online questionnaire, sent to Portuguese individuals from the academic sector and their respective relatives/friends (n=508). Using Exploratory and Confirmatory Factor Analysis, we extracted 11 main categories of tourist attractions and analyzed which personality dimensions were predictors (or not) of preferences for those tourist attractions. As a result, we propose the first model that relates the five personality dimensions with preferences for tourist attractions, which intends to offer a base for researchers of RS for tourism to automatically model tourist preferences based on their personality.GrouPlanner Project under the European Regional Development Fund POCI-01-0145-FEDER29178 and by National Funds through the FCT – Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) within the Projects UIDB/00319/2020 and UIDB/00760/202

    Extracting Relevance and Affect Information from Physiological Text Annotation

    Get PDF
    We present physiological text annotation, which refers to the practice of associating physiological responses to text content in order to infer characteristics of the user information needs and affective responses. Text annotation is a laborious task, and implicit feedback has been studied as a way to collect annotations without requiring any explicit action from the user. Previous work has explored behavioral signals, such as clicks or dwell time to automatically infer annotations, and physiological signals have mostly been explored for image or video content. We report on two experiments in which physiological text annotation is studied first to 1) indicate perceived relevance and then to 2) indicate affective responses of the users. The first experiment tackles the user’s perception of relevance of an information item, which is fundamental towards revealing the user’s information needs. The second experiment is then aimed at revealing the user’s affective responses towards a -relevant- text document. Results show that physiological user signals are associated with relevance and affect. In particular, electrodermal activity (EDA) was found to be different when users read relevant content than when they read irrelevant content and was found to be lower when reading texts with negative emotional content than when reading texts with neutral content. Together, the experiments show that physiological text annotation can provide valuable implicit inputs for personalized systems. We discuss how our findings help design personalized systems that can annotate digital content using human physiology without the need for any explicit user interaction

    A European research agenda for somatic symptom disorders, bodily distress disorders, and functional disorders: Results of an estimate-talk-estimate delphi expert study

    Get PDF
    Background: Somatic Symptom Disorders (SSD), Bodily Distress Disorders (BDD) and functional disorders (FD) are associated with high medical and societal costs and pose a substantial challenge to the population and health policy of Europe. To meet this challenge, a specific research agenda is needed as one of the cornerstones of sustainable mental health research and health policy for SSD, BDD, and FD in Europe. Aim: To identify the main challenges and research priorities concerning SSD, BDD, and FD from a European perspective. Methods: Delphi study conducted from July 2016 until October 2017 in 3 rounds with 3 workshop meetings and 3 online surveys, involving 75 experts and 21 European countries. EURONET-SOMA and the European Association of Psychosomatic Medicine (EAPM) hosted the meetings. Results: Eight research priorities were identified: (1) Assessment of diagnostic profiles relevant to course and treatment outcome. (2) Development and evaluation of new, effective interventions. (3) Validation studies on questionnaires or semi-structured interviews that assess chronic medical conditions in this context. (4) Research into patients preferences for diagnosis and treatment. (5) Development of new methodologic designs to identify and explore mediators and moderators of clinical course and treatment outcomes (6). Translational research exploring how psychological and somatic symptoms develop from somatic conditions and biological and behavioral pathogenic factors. (7) Development of new, effective interventions to personalize treatment. (8) Implementation studies of treatment interventions in different settings, such as primary care, occupational care, general hospital and specialty mental health settings. The general public and policymakers will benefit from the development of new, effective, personalized interventions for SSD, BDD, and FD, that will be enhanced by translational research, as well as from the outcomes of research into patient involvement, GP-patient communication, consultation-liaison models and implementation. Conclusion: Funding for this research agenda, targeting these challenges in coordinated research networks such as EURONET-SOMA and EAPM, and systematically allocating resources by policymakers to this critical area in mental and physical well-being is urgently needed to improve efficacy and impact for diagnosis and treatment of SSD, BDD, and FD across Europe

    A new global PKP data set to study Earth's core and deep mantle

    No full text
    We present an extension of the previously developed algorithm for Simulated Annealing Waveform Inversion of Body waves (SAWIB) to resolve the interference between direct PKP seismic phases and their corresponding depth phases (pPKP and sPKP) which occur

    Seismic structure of the crust and uppermost mantle of the Capricorn and Paterson Orogens and adjacent cratons, Western Australia, from passive seismic transects

    No full text
    The seismic structure of the Proterozoic Capricorn and Paterson Orogens and adjacent Archaean Yilgarn and Pilbara Cratons, Western Australia, is determined using a passive seismic approach. We use recordings of distant earthquakes made along two transects of 3-component broadband stations. The stations were deployed for approximately 1. year (mid 2006-2007) during which time 70 earthquakes were recorded at each station with a suitable signal to noise ratio for receiver function analysis and hence the S wavespeed profiles of the crust and uppermost mantle beneath each recording station are determined. We investigate the deep crustal constraints on terrane boundary locations, the patterns of seismic discontinuities in the crust, and the variations in the depth and character of the Moho. This broad-scale information regarding the present day crustal architecture, and hence the crustal evolution, of Western Australia, complements previous surface geological and other geophysical studies. Western Australia is an exceptionally large, well preserved region of ancient crust and hence this work also adds to the body of knowledge regarding Proterozoic orogenic processes in general. The new passive seismic work shows a region of double crust or upper mantle discontinuities beneath the Glenburgh Terrane, adjacent to the northwest Yilgarn Craton. The upper crust of the orogens is always layered whereas the cratons have a simple upper crust. Both the Capricorn and Paterson Orogens are characterised by deeper Moho discontinuities with a lesser wavespeed contrast than the very sharp discontinuity observed beneath the adjacent Pilbara and Yilgarn Cratons. This is consistent with the weaker orogenic crust of the Capricorn and Paterson Orogens accommodating most of the horizontal deformation during assembly and reworking of the West Australian Craton while the Pilbara and Yilgarn Cratons acted as rigid crustal blocks

    Seismic structure of the crust and uppermost mantle of the Capricorn and Paterson Orogens and adjacent cratons, Western Australia, from passive seismic transects

    No full text
    The seismic structure of the Proterozoic Capricorn and Paterson Orogens and adjacent Archaean Yilgarn and Pilbara Cratons, Western Australia, is determined using a passive seismic approach. We use recordings of distant earthquakes made along two transects of 3-component broadband stations. The stations were deployed for approximately 1. year (mid 2006-2007) during which time 70 earthquakes were recorded at each station with a suitable signal to noise ratio for receiver function analysis and hence the S wavespeed profiles of the crust and uppermost mantle beneath each recording station are determined. We investigate the deep crustal constraints on terrane boundary locations, the patterns of seismic discontinuities in the crust, and the variations in the depth and character of the Moho. This broad-scale information regarding the present day crustal architecture, and hence the crustal evolution, of Western Australia, complements previous surface geological and other geophysical studies. Western Australia is an exceptionally large, well preserved region of ancient crust and hence this work also adds to the body of knowledge regarding Proterozoic orogenic processes in general. The new passive seismic work shows a region of double crust or upper mantle discontinuities beneath the Glenburgh Terrane, adjacent to the northwest Yilgarn Craton. The upper crust of the orogens is always layered whereas the cratons have a simple upper crust. Both the Capricorn and Paterson Orogens are characterised by deeper Moho discontinuities with a lesser wavespeed contrast than the very sharp discontinuity observed beneath the adjacent Pilbara and Yilgarn Cratons. This is consistent with the weaker orogenic crust of the Capricorn and Paterson Orogens accommodating most of the horizontal deformation during assembly and reworking of the West Australian Craton while the Pilbara and Yilgarn Cratons acted as rigid crustal blocks

    Earth\u27s deepest earthquake swarms track fluid ascent beneath nascent arc volcanoes

    Get PDF
    Most of the world\u27s explosive volcanoes are located in volcanic arcs, formed by fluid-fluxed melting of upper mantle rocks. The fluids that facilitate melting are released from subducted tectonic plates as they sink into the mantle. Yet, we have sparse knowledge of the migration pathways of melts through the upper mantle (i.e., between the surface of the subducted plate and arc volcanoes). We are also uncertain of the time required for this migration to occur. Here, we show evidence of two earthquake swarms that occur in the upper mantle beneath the Mariana and Izu-Bonin arc systems. The best-resolved swarm occurs beneath the Mariana arc, where the earthquakes define a sub-vertical pipe-like structure with a diameter of ∼50 km and occurs between depths of ∼10-250 km. To test the robustness of depth locations, we used a fully non-linear grid search algorithm, double-difference relocation, as well as an analysis of pP-P arrival times and depth sensitive phases. In addition, we calculated centroid moment tensor solutions using a 3D Earth model to understand the mechanism of failure within the swarms. These data demonstrate that the sub-vertical earthquake swarm occurs within the upper mantle between the subducted slab and the overriding volcanic arc, with seismicity concentrated within discrete day- to month-long swarms of activity over a single two-year period. The Izu-Bonin example shares a similar sub-vertical pipe-like geometry with seismic activity bracketed within a two-year period. We infer that these rare earthquake swarms record the ascent of hydrous melt and/or fluid, from dehydration of the subducting plate. This implies that hydrous minerals within subducted slabs continue to dehydrate to depths of at least 200-250 km. Also, the short duration of earthquake swarms implies that fluids/melts can be rapidly transported through the sub-arc mantle at rates in the order of km/hr. This is consistent with rapid melt ascent rates inferred from geospeedometry and experimental petrology and is reminiscent of patterns seen during episodic tremor and slip events
    corecore