1,150 research outputs found

    Rapidly rotating Bose-Einstein condensates in anharmonic potentials

    Full text link
    Rapidly rotating Bose-Einstein condensates confined in anharmonic traps can exhibit a rich variety of vortex phases, including a vortex lattice, a vortex lattice with a hole, and a giant vortex. Using an augmented Thomas-Fermi variational approach to determine the ground state of the condensate in the rotating frame -- valid for sufficiently strongly interacting condensates -- we determine the transitions between these three phases for a quadratic-plus-quartic confining potential. Combining the present results with previous numerical simulations of small rotating condensates in such anharmonic potentials, we delineate the general structure of the zero temperature phase diagram.Comment: 5 pages, 5 figure

    Theory of vortex-lattice melting in a one-dimensional optical lattice

    Full text link
    We investigate quantum and temperature fluctuations of a vortex lattice in a one-dimensional optical lattice. We discuss in particular the Bloch bands of the Tkachenko modes and calculate the correlation function of the vortex positions along the direction of the optical lattice. Because of the small number of particles in the pancake Bose-Einstein condensates at every site of the optical lattice, finite-size effects become very important. Moreover, the fluctuations in the vortex positions are inhomogeneous due to the inhomogeneous density. As a result, the melting of the lattice occurs from the outside inwards. However, tunneling between neighboring pancakes substantially reduces the inhomogeneity as well as the size of the fluctuations. On the other hand, nonzero temperatures increase the size of the fluctuations dramatically. We calculate the crossover temperature from quantum melting to classical melting. We also investigate melting in the presence of a quartic radial potential, where a liquid can form in the center instead of at the outer edge of the pancake Bose-Einstein condensates.Comment: 17 pages, 17 figures, submitted to Phys. Rev. A, references update

    Strain versus stress in a model granular material: a Devil's staircase

    Full text link
    The series of equilibrium states reached by disordered packings of rigid, frictionless discs in two dimensions, under gradually varying stress, are studied by numerical simulations. Statistical properties of trajectories in configuration space are found to be independent of specific assumptions ruling granular dynamics, and determined by geometry only. A monotonic increase in some macroscopic loading parameter causes a discrete sequence of rearrangements. For a biaxial compression, we show that, due to the statistical importance of such events of large magnitudes, the dependence of the resulting strain on stress direction is a Levy flight in the thermodynamic limit.Comment: REVTeX, 4 pages, 5 included PostScript figures. New version altered throughout text, very close to published pape

    Transition from single-file to two-dimensional diffusion of interacting particles in a quasi-one-dimensional channel

    Full text link
    Diffusive properties of a monodisperse system of interacting particles confined to a \textit{quasi}-one-dimensional (Q1D) channel are studied using molecular dynamics (MD) simulations. We calculate numerically the mean-squared displacement (MSD) and investigate the influence of the width of the channel (or the strength of the confinement potential) on diffusion in finite-size channels of different shapes (i.e., straight and circular). The transition from single-file diffusion (SFD) to the two-dimensional diffusion regime is investigated. This transition (regarding the calculation of the scaling exponent (α\alpha) of the MSD tα\propto t^{\alpha}) as a function of the width of the channel, is shown to change depending on the channel's confinement profile. In particular the transition can be either smooth (i.e., for a parabolic confinement potential) or rather sharp/stepwise (i.e., for a hard-wall potential), as distinct from infinite channels where this transition is abrupt. This result can be explained by qualitatively different distributions of the particle density for the different confinement potentials.Comment: 13 pages, 11 figure

    Polarizational stopping power of heavy-ion diclusters in two-dimensional electron liquids

    Full text link
    The in-plane polarizational stopping power of heavy-ion diclusters in a two-dimensional strongly coupled electron liquid is studied. Analytical expressions for the stopping power of both fast and slow projectiles are derived. To go beyond the random-phase approximation we make use of the inverse dielectric function obtained by means of the method of moments and some recent analytical expressions for the static local-field correction factor.Comment: 9 pages, 5 figures. Published in Physical Review B http://link.aps.org/abstract/PRB/v75/e11510

    Coherence simplices

    Full text link
    Coherence simplices are generic topological correlation-function defects supported by a hierarchy of coherence functions. We classify coherence simplices based on their topology and discuss their structure and dynamics, together with their relevance to several physical systems.Comment: 15 pages, 4 figures, to appear in New Journal of Physic

    Green's function probe of a static granular piling

    Full text link
    We present an experiment which aim is to investigate the mechanical properties of a static granular assembly. The piling is an horizontal 3D granular layer confined in a box, we apply a localized extra force at the surface and the spatial distribution of stresses at the bottom is obtained (the mechanical Green's function). For different types of granular media, we observe a linear pressure response which profile shows one peak centered at the vertical of the point of application. The peak's width increases linearly when increasing the depth. This green function seems to be in -at least- qualitative agreement with predictions of elastic theory.Comment: 9 pages, 3 .eps figures, submitted to PR

    Force distributions in 3D granular assemblies: Effects of packing order and inter-particle friction

    Full text link
    We present a systematic investigation of the distribution of normal forces at the boundaries of static packings of spheres. A new method for the efficient construction of large hexagonal-close-packed crystals is introduced and used to study the effect of spatial ordering on the distribution of forces. Under uniaxial compression we find that the form for the probability distribution of normal forces between particles does not depend strongly on crystallinity or inter-particle friction. In all cases the distribution decays exponentially at large forces and shows a plateau or possibly a small peak near the average force but does not tend to zero at small forces.Comment: 9 pages including 8 figure
    corecore