1,906 research outputs found

    Vortex lattices in rapidly rotating Bose-Einstein condensates: modes and correlation functions

    Full text link
    After delineating the physical regimes which vortex lattices encounter in rotating Bose-Einstein condensates as the rotation rate, Ω\Omega, increases, we derive the normal modes of the vortex lattice in two dimensions at zero temperature. Taking into account effects of the finite compressibility, we find an inertial mode of frequency ≥2Ω\ge 2\Omega, and a primarily transverse Tkachenko mode, whose frequency goes from being linear in the wave vector in the slowly rotating regime, where Ω\Omega is small compared with the lowest compressional mode frequency, to quadratic in the wave vector in the opposite limit. We calculate the correlation functions of vortex displacements and phase, density and superfluid velocities, and find that the zero-point excitations of the soft quadratic Tkachenko modes lead in a large system to a loss of long range phase correlations, growing logarithmically with distance, and hence lead to a fragmented state at zero temperature. The vortex positional ordering is preserved at zero temperature, but the thermally excited Tkachenko modes cause the relative positional fluctuations to grow logarithmically with separation at finite temperature. The superfluid density, defined in terms of the transverse velocity autocorrelation function, vanishes at all temperatures. Finally we construct the long wavelength single particle Green's function in the rotating system and calculate the condensate depletion as a function of temperature.Comment: 11 pages Latex, no figure

    Tkachenko modes of vortex lattices in rapidly rotating Bose-Einstein condensates

    Full text link
    We calculate the in-plane modes of the vortex lattice in a rotating Bose condensate from the Thomas-Fermi to the mean-field quantum Hall regimes. The Tkachenko mode frequency goes from linear in the wavevector, kk, for lattice rotational velocities, Ω\Omega, much smaller than the lowest sound wave frequency in a finite system, to quadratic in kk in the opposite limit. The system also supports an inertial mode of frequency ≥2Ω\ge 2\Omega. The calculated frequencies are in good agreement with recent observations of Tkachenko modes at JILA, and provide evidence for the decrease in the shear modulus of the vortex lattice at rapid rotation.Comment: 4 pages, 2 figure

    Tkachenko modes as sources of quasiperiodic pulsar spin variations

    Full text link
    We study the long wavelength shear modes (Tkachenko waves) of triangular lattices of singly quantized vortices in neutron star interiors taking into account the mutual friction between the superfluid and the normal fluid and the shear viscosity of the normal fluid. The set of Tkachenko modes that propagate in the plane orthogonal to the spin vector are weakly damped if the coupling between the superfluid and normal fluid is small. In strong coupling, their oscillation frequencies are lower and are undamped for small and moderate shear viscosities. The periods of these modes are consistent with the observed ~100-1000 day variations in spin of PSR 1828-11.Comment: 7 pages, 3 figures, uses RevTex, v2: added discussion/references, matches published versio

    Giant Vortex Lattice Deformations in Rapidly Rotating Bose-Einstein Condensates

    Full text link
    We have performed numerical simulations of giant vortex structures in rapidly rotating Bose-Einstein condensates within the Gross-Pitaevskii formalism. We reproduce the qualitative features, such as oscillation of the giant vortex core area, formation of toroidal density hole, and the precession of giant vortices, observed in the recent experiment [Engels \emph{et.al.}, Phys. Rev. Lett. {\bf 90}, 170405 (2003)]. We provide a mechanism which quantitatively explains the observed core oscillation phenomenon. We demonstrate the clear distinction between the mechanism of atom removal and a repulsive pinning potential in creating giant vortices. In addition, we have been able to simulate the transverse Tkachenko vortex lattice vibrations.Comment: 5 pages, 6 figures; revised description of core oscillation, new subfigur

    Pinning and collective modes of a vortex lattice in a Bose-Einstein condensate

    Full text link
    We consider the ground state of vortices in a rotating Bose-Einstein condensate that is loaded in a corotating two-dimensional optical lattice. Due to the competition between vortex interactions and their potential energy, the vortices arrange themselves in various patterns, depending on the strength of the optical potential and the vortex density. We outline a method to determine the phase diagram for arbitrary vortex filling factor. Using this method, we discuss several filling factors explicitly. For increasing strength of the optical lattice, the system exhibits a transition from the unpinned hexagonal lattice to a lattice structure where all the vortices are pinned by the optical lattice. The geometry of this fully pinned vortex lattice depends on the filling factor and is either square or triangular. For some filling factors there is an intermediate half-pinned phase where only half of the vortices is pinned. We also consider the case of a two-component Bose-Einstein condensate, where the possible coexistence of the above-mentioned phases further enriches the phase diagram. In addition, we calculate the dispersion of the low-lying collective modes of the vortex lattice and find that, depending on the structure of the ground state, they can be gapped or gapless. Moreover, in the half-pinned and fully pinned phases, the collective mode dispersion is anisotropic. Possible experiments to probe the collective mode spectrum, and in particular the gap, are suggested.Comment: 29 pages, 4 figures, changes in section

    Vortex states of rapidly rotating dilute Bose-Einstein condensates

    Full text link
    We show that, in the Thomas-Fermi regime, the cores of vortices in rotating dilute Bose-Einstein condensates adjust in radius as the rotation velocity, Ω\Omega, grows, thus precluding a phase transition associated with core overlap at high vortex density. In both a harmonic trap and a rotating hard-walled bucket, the core size approaches a limiting fraction of the intervortex spacing. At large rotation speeds, a system confined in a bucket develops, within Thomas-Fermi, a hole along the rotation axis, and eventually makes a transition to a giant vortex state with all the vorticity contained in the hole.Comment: 4 pages, 2 figures, RevTex4. Version as published; discussion extended, some references added and update

    Two-component Bose-Einstein Condensates with Large Number of Vortices

    Full text link
    We consider the condensate wavefunction of a rapidly rotating two-component Bose gas with an equal number of particles in each component. If the interactions between like and unlike species are very similar (as occurs for two hyperfine states of 87^{87}Rb or 23^{23}Na) we find that the two components contain identical rectangular vortex lattices, where the unit cell has an aspect ratio of 3\sqrt{3}, and one lattice is displaced to the center of the unit cell of the other. Our results are based on an exact evaluation of the vortex lattice energy in the large angular momentum (or quantum Hall) regime.Comment: 4 pages, 2 figures, RevTe

    Colloids with key-lock interactions: non-exponential relaxation, aging and anomalous diffusion

    Full text link
    The dynamics of particles interacting by key-lock binding of attached biomolecules are studied theoretically. Experimental realizations of such systems include colloids grafted with complementary single-stranded DNA (ssDNA), and particles grafted with antibodies to cell-membrane proteins. Depending on the coverage of the functional groups, we predict two distinct regimes. In the low coverage localized regime, there is an exponential distribution of departure times. As the coverage is increased the system enters a diffusive regime resulting from the interplay of particle desorption and diffusion. This interplay leads to much longer bound state lifetimes, a phenomenon qualitatively similar to aging in glassy systems. The diffusion behavior is analogous to dispersive transport in disordered semiconductors: depending on the interaction parameters it may range from a finite renormalization of the diffusion coefficient to anomalous, subdiffusive behavior. We make connections to recent experiments and discuss the implications for future studies.Comment: v2: substantially revised version, new treatment of localized regime, 19 pages, 10 figure

    High-Energy Forward Scattering and the Pomeron: Simple Pole versus Unitarized Models

    Full text link
    Using the largest data set available, we determine the best values that the data at t=0 (total cross sections and real parts of the hadronic amplitudes) give for the intercepts and couplings of the soft pomeron and of the rho/omega and a/f trajectories. We show that these data cannot discriminate between a simple-pole fit and asymptotic log square s and log s fits, and hence are not sufficient to reveal the ultimate nature of the pomeron. However, we evaluate the existing evidence (factorization, universality, quark counting) favouring the simple-pole hypothesis. We also examine the range of validity in energy of the fits, and show that one cannot rely on such fits in the region sqrt(s)<9 GeV. We also establish bounds on the odderon and the hard pomeron.Comment: 20 pages, 10 figures. Predictions of Table 4 corrected and acknowledgements adde
    • …
    corecore