183 research outputs found
Nodal Landau Fermi-Liquid Quasiparticles in Overdoped LaSrCuO
Nodal angle resolved photoemission spectra taken on overdoped
LaSrCuO are presented and analyzed. It is proven that the
low-energy excitations are true Landau Fermi-liquid quasiparticles. We show
that momentum and energy distribution curves can be analyzed self-consistently
without quantitative knowledge of the bare band dispersion. Finally, by
imposing Kramers-Kronig consistency on the self-energy , insight into
the quasiparticle residue is gained. We conclude by comparing our results to
quasiparticle properties extracted from thermodynamic, magneto-resistance, and
high-field quantum oscillation experiments on overdoped
TlBaCuO.Comment: Accepted for publication in Phys. Rev.
Electronic structure near the 1/8-anomaly in La-based cuprates
We report an angle resolved photoemission study of the electronic structure
of the pseudogap state in \NdLSCO ( K). Two opposite dispersing Fermi
arcs are the main result of this study. The several scenarios that can explain
this observation are discussed.Comment: A high-resolution version can be found at
http://lns.web.psi.ch/lns/download/Pockets/arXiv.pd
The coherent {\it d}-wave superconducting gap in underdoped LaSrCuO as studied by angle-resolved photoemission
We present angle-resolved photoemission spectroscopy (ARPES) data on
moderately underdoped LaSrCuO at temperatures below and
above the superconducting transition temperature. Unlike previous studies of
this material, we observe sharp spectral peaks along the entire underlying
Fermi surface in the superconducting state. These peaks trace out an energy gap
that follows a simple {\it d}-wave form, with a maximum superconducting gap of
14 meV. Our results are consistent with a single gap picture for the cuprates.
Furthermore our data on the even more underdoped sample
LaSrCuO also show sharp spectral peaks, even at the
antinode, with a maximum superconducting gap of 26 meV.Comment: Accepted by Phys. Rev. Let
Spectroscopic evidence for preformed Cooper pairs in the pseudogap phase of cuprates
Angle-resolved photoemission on underdoped LaSrCuO
reveals that in the pseudogap phase, the dispersion has two branches located
above and below the Fermi level with a minimum at the Fermi momentum. This is
characteristic of the Bogoliubov dispersion in the superconducting state. We
also observe that the superconducting and pseudogaps have the same d-wave form
with the same amplitude. Our observations provide direct evidence for preformed
Cooper pairs, implying that the pseudogap phase is a precursor to
superconductivity
Anisotropic quasiparticle scattering rates in slightly underdoped to optimally doped high-temperature \LSCO\ superconductors
An angle-resolved photoemission study of the scattering rate in the
superconducting phase of the high-temperature superconductor \LSCO\ with
and , as a function of binding energy and momentum, is
presented. We observe that the scattering rate scales linearly with binding
energy up to the high-energy scale eV. The scattering rate is
found to be strongly anisotropic, with a minimum along the (0,0)-()
direction. A possible connection to a quantum-critical point is discussed.Comment: Final version published in PR
Correlation effects in the ground state charge density of Mott-insulating NiO: a comparison of ab-initio calculations and high-energy electron diffraction measurements
Accurate high-energy electron diffraction measurements of structure factors
of NiO have been carried out to investigate how strong correlations in the Ni
3d shell affect electron charge density in the interior area of nickel ions and
whether the new ab-initio approaches to the electronic structure of strongly
correlated metal oxides are in accord with experimental observations. The
generalized gradient approximation (GGA) and the local spin density
approximation corrected by the Hubbard U term (LSDA+U) are found to provide the
closest match to experimental measurements. The comparison of calculated and
observed electron charge densities shows that correlations in the Ni 3d shell
suppress covalent bonding between the oxygen and nickel sublattices.Comment: 6 pages, LaTeX and 5 figures in the postscript forma
- …