9 research outputs found

    The Importance of Digging into the Genetics of SMN Genes in the Therapeutic Scenario of Spinal Muscular Atrophy

    Get PDF
    Estructura híbrida; Atrofia muscular espinal; Neurona motora de supervivencia 1Hybrid structure; Spinal muscular atrophy; Survival motor neuron 1Estructura híbrida; Atròfia muscular espinal; Neurona motora de supervivència 1After 26 years of discovery of the determinant survival motor neuron 1 and the modifier survival motor neuron 2 genes (SMN1 and SMN2, respectively), three SMN-dependent specific therapies are already approved by FDA and EMA and, as a consequence, worldwide SMA patients are currently under clinical investigation and treatment. Bi-allelic pathogenic variants (mostly deletions) in SMN1 should be detected in SMA patients to confirm the disease. Determination of SMN2 copy number has been historically employed to correlate with the phenotype, predict disease evolution, stratify patients for clinical trials and to define those eligible for treatment. In view that discordant genotype-phenotype correlations are present in SMA, besides technical issues with detection of SMN2 copy number, we have hypothesized that copy number determination is only the tip of the iceberg and that more deepen studies of variants, sequencing and structures of the SMN2 genes are necessary for a better understanding of the disease as well as to investigate possible influences in treatment responses. Here, we highlight the importance of a comprehensive approach of SMN1 and SMN2 genetics with the perspective to apply for better prediction of SMA in positive neonatal screening cases and early diagnosis to start treatments.This work was partially supported by Grants from Biogen and Roche (to E.F.T. supporting M.C.-R. and L.B.-P.), and from Spanish Instituto de Salud Carlos III, Fondo de Investigaciones Sanitarias and cofunded with ERDF funds (Grant No. FIS PI18/000687) (to E.F.T.)

    Validation of nasospheroids to assay CFTR functionality and modulator responses in cystic fibrosis

    Get PDF
    Fibrosi quística; Marcadors predictius; Models d'aparell respiratoriFibrosis quística; Marcadores predictivos; Modelos del sistema respiratorioCystic fibrosis; Predictive markers; Respiratory system modelsThe availability of a simple, robust and non-invasive in vitro airway model would be useful to study the functionality of the cystic fibrosis transmembrane regulator (CFTR) protein and to personalize modulator therapy for cystic fibrosis (CF) patients. Our aim was to validate a CFTR functional study using nasospheroids, a patient-derived nasal cell 3D-culture. We performed live-cell experiments in nasospheroids obtained from wild-type individuals and CF patients with different genotypes and phenotypes. We extended the existing method and expanded the analysis to upgrade measurements of CFTR activity using forskolin-induced shrinking. We also tested modulator drugs in CF samples. Immobilizing suspended-nasospheroids provided a high number of samples for live-cell imaging. The diversity observed in basal sizes of nasospheroids did not affect the functional analysis of CFTR. Statistical analysis with our method was simple, making this protocol easy to reproduce. Moreover, we implemented the measurement of inner fluid reservoir areas to further differentiate CFTR functionality. In summary, this rapid methodology is helpful to analyse response to modulators in CF samples to allow individualized treatment for CF patients.This work was supported by a grant from Fundación Mutua Madrileña (Rare disorders, MM/XIV/RECERCA/2017/TIZZANO) to E.F.T. and Fundació Arcadi to S.G. and supporting M.C. and P.B.; M.C. was partially supported by Fundació Daniel Bravo Andreu

    Recommendations for Interpreting and Reporting Silent Carrier and Disease-Modifying Variants in SMA Testing Workflows

    Get PDF
    Carrier screening; Diagnosis; Spinal muscular atrophyCribado de portadores; Diagnóstico; Atrofia muscular espinalCribratge de portadors; Diagnòstic; Atròfia muscular espinalGenetic testing for SMA diagnosis, newborn screening, and carrier screening has become a significant public health interest worldwide, driven largely by the development of novel and effective molecular therapies for the treatment of spinal muscular atrophy (SMA) and the corresponding updates to testing guidelines. Concurrently, understanding of the underlying genetics of SMA and their correlation with a broad range of phenotypes and risk factors has also advanced, particularly with respect to variants that modulate disease severity or impact residual carrier risks. While testing guidelines are beginning to emphasize the importance of these variants, there are no clear guidelines on how to utilize them in a real-world setting. Given the need for clarity in practice, this review summarizes several clinically relevant variants in the SMN1 and SMN2 genes, including how they inform outcomes for spinal muscular atrophy carrier risk and disease prognosis.This work was partially supported by Grants from Biogen ESP-SMG-17-11256 (to E.F.T. supporting L.B.-P.), Roche and Spanish Instituto de Salud Carlos III, Fondo de Investigaciones Sanitarias and co-funded with ERDF funds (Grant No. FIS PI18/000687) (to E.F.T.)

    High Mutational Heterogeneity, and New Mutations in the Human Coagulation Factor V Gene. Future Perspectives for Factor V Deficiency Using Recombinant and Advanced Therapies

    Get PDF
    Enfermedad de Owren; Análisis de mutaciones; ParahemofiliaMalaltia d'Owren; Anàlisi de mutacions; ParahemofíliaOwren’s disease; Mutation analysis; ParahemophiliaFactor V is an essential clotting factor that plays a key role in the blood coagulation cascade on account of its procoagulant and anticoagulant activity. Eighty percent of circulating factor V is produced in the liver and the remaining 20% originates in the α-granules of platelets. In humans, the factor V gene is about 80 kb in size; it is located on chromosome 1q24.2, and its cDNA is 6914 bp in length. Furthermore, nearly 190 mutations have been reported in the gene. Factor V deficiency is an autosomal recessive coagulation disorder associated with mutations in the factor V gene. This hereditary coagulation disorder is clinically characterized by a heterogeneous spectrum of hemorrhagic manifestations ranging from mucosal or soft-tissue bleeds to potentially fatal hemorrhages. Current treatment of this condition consists in the administration of fresh frozen plasma and platelet concentrates. This article describes the cases of two patients with severe factor V deficiency, and of their parents. A high level of mutational heterogeneity of factor V gene was identified, nonsense mutations, frameshift mutations, missense changes, synonymous sequence variants and intronic changes. These findings prompted the identification of a new mutation in the human factor V gene, designated as Jaén-1, which is capable of altering the procoagulant function of factor V. In addition, an update is provided on the prospects for the treatment of factor V deficiency on the basis of yet-to-be-developed recombinant products or advanced gene and cell therapies that could potentially correct this hereditary disorder.This study was supported by the Andalusian Association of Hemophilia (ASANHEMO FV 2016–20 grant) and Octapharma S.A. (OCPH-2019-20 grant)

    Three years pilot of spinal muscular atrophy newborn screening turned into official program in Southern Belgium

    Get PDF
    Motor neuron disease; Population screeningMalaltia de la neurona motora; Cribratge de poblacióEnfermedad de la neurona motora; Cribado de poblaciónThree new therapies for spinal muscular atrophy (SMA) have been approved by the United States Food and Drug Administration and the European Medicines Agency since 2016. Although these new therapies improve the quality of life of patients who are symptomatic at first treatment, administration before the onset of symptoms is significantly more effective. As a consequence, newborn screening programs have been initiated in several countries. In 2018, we launched a 3-year pilot program to screen newborns for SMA in the Belgian region of Liège. This program was rapidly expanding to all of Southern Belgium, a region of approximately 55,000 births annually. During the pilot program, 136,339 neonates were tested for deletion of exon 7 of SMN1, the most common cause of SMA. Nine SMA cases with homozygous deletion were identified through this screen. Another patient was identified after presenting with symptoms and was shown to be heterozygous for the SMN1 exon 7 deletion and a point mutation on the opposite allele. These ten patients were treated. The pilot program has now successfully transitioned into the official neonatal screening program in Southern Belgium. The lessons learned during implementation of this pilot program are reported.This pilot study is supported by AveXis, Biogen, Roche, the ABMM (Association Belge contre les Maladies neuro-Musculaires), Minister's Office Alda GREOLI (Wallonia-Brussels Community) and donations from individuals

    Schuurs–Hoeijmakers Syndrome (PACS1 Neurodevelopmental Disorder): Seven Novel Patients and a Review

    Get PDF
    Síndrome de Schuurs-Hoeijmakers; Discapacitat intel·lectual; Trastorns rarsSíndrome de Schuurs-Hoeijmakers; Discapacidad intelectual; Trastornos rarosSchuurs–Hoeijmakers syndrome; Intellectual disability; Rare disordersSchuurs–Hoeijmakers syndrome (SHMS) or PACS1 Neurodevelopmental disorder is a rare disorder characterized by intellectual disability, abnormal craniofacial features and congenital malformations. SHMS is an autosomal dominant hereditary disease caused by pathogenic variants in the PACS1 gene. PACS1 is a trans-Golgi-membrane traffic regulator that directs protein cargo and several viral envelope proteins. It is upregulated during human embryonic brain development and has low expression after birth. So far, only 54 patients with SHMS have been reported. In this work, we report on seven new identified SHMS individuals with the classical c.607C > T: p.Arg206Trp PACS1 pathogenic variant and review clinical and molecular aspects of all the patients reported in the literature, providing a summary of clinical findings grouped as very frequent (≥75% of patients), frequent (50–74%), infrequent (26–49%) and rare (less than ≤25%).This work was possible thanks to the funding provided by the project “Proyecto Piloto para la mejora del diagnóstico genético en personas y familias afectadas o con sospecha de padecer enfermedades raras de base genética” of the Ministry of Health, under the grant BOCM-20181126-24 provided by the Consejería de Sanidad de la Comunidad de Madrid. Funding to J.P. and F.J.R. was partially provided by the group research grant DGA/FEDER B32_17R/B32_20R

    Identification of 22q11.2 deletion syndrome via newborn screening for severe combined immunodeficiency: two years’ experience in Catalonia (Spain)

    Get PDF
    22q11.2 deletion; Newborn screening; Severe combined immunodeficiencyeDeleción 22q11.2; Examen de recién nacidos; Inmunodeficiencia combinada graveSupressió 22q11.2; Cribratge de nounats; Immunodeficiència combinada greuBackground: The current scenario of newborn screening is changing as DNA studies are being included in the programs of several countries. Severe combined immunodeficiency (SCID) disorders can be detected using quantitative PCR assays to measure T-cell receptor excision circles (TRECs), a byproduct of correct T-cell development. However, in addition to SCID, other T-cell-deficient phenotypes such as 22q11.2 deletion syndrome 22q11.2 duplication syndrome, CHARGE syndrome, and trisomy 21 are detected. Methods: We present our experience with the detection of 22q11.2 deletion syndrome and 22q11.2 duplication syndrome in a series of 103,903 newborns included in the newborn screening program of Catalonia (Spain). Results: Thirty newborns tested were positive (low TREC levels) and five were found to have copy number variations at the 22q11 region (4 deletions and 1 duplication) when investigated with array comparative genomic hybridization technology and MLPA. Conclusion: Newborn screening for SCID enables detection of several conditions, such as 22q syndromes, which should be managed by prompt, proactive approaches with adequate counseling for families by a multidisciplinary team

    A Novel Intragenic Duplication in the HDAC8 Gene Underlying a Case of Cornelia de Lange Syndrome

    Get PDF
    Cornelia de Lange syndrome; Genetic disorder; Intragenic duplicationSíndrome de Cornelia de Lange; Trastorno genético; Duplicación intragénicaSíndrome de Cornelia de Lange; Trastorn genètic; Duplicació intragènicaCornelia de Lange syndrome (CdLS) is a multisystemic genetic disorder characterized by distinctive facial features, growth retardation, and intellectual disability, as well as various systemic conditions. It is caused by genetic variants in genes related to the cohesin complex. Single-nucleotide variations are the best-known genetic cause of CdLS; however, copy number variants (CNVs) clearly underlie a substantial proportion of cases of the syndrome. The NIPBL gene was thought to be the locus within which clinically relevant CNVs contributed to CdLS. However, in the last few years, pathogenic CNVs have been identified in other genes such as HDAC8, RAD21, and SMC1A. Here, we studied an affected girl presenting with a classic CdLS phenotype heterozygous for a de novo ~32 kbp intragenic duplication affecting exon 10 of HDAC8. Molecular analyses revealed an alteration in the physiological splicing that included a 96 bp insertion between exons 9 and 10 of the main transcript of HDAC8. The aberrant transcript was predicted to generate a truncated protein whose accessibility to the active center was restricted, showing reduced ease of substrate entry into the mutated enzyme. Lastly, we conclude that the duplication is responsible for the patient’s phenotype, highlighting the contribution of CNVs as a molecular cause underlying CdLS.This work was supported by the Spanish Ministry of Health-ISCIII Fondo de Investigación Sanitaria (FIS) (Ref. PI19/01860, to F.J.R. and J.P.) and Diputación General de Aragón-FEDER: European Social Fund (Grupo de Referencia B32_17R/B32_20R, to J.P.). A.L.-P. is supported by a “Juan de la Cierva-Incorporación” postdoctoral grant from MICIU (Spanish Ministry of Science and Universities), M.G.-S. is supported by a Predoctoral Fellowship from the Diputación General de Aragón, and C.L.-C. is supported by a Predoctoral Fellowship from the MH-ISCIII. This work was also supported by Spanish government grants RTI2018-094434-B-I00 (MCIU/AEI/FEDER, UE) and DTS20-00024 (ISCIII) to P.G.-P., as well as funds from the European JPIAMR network “EPIC-Alliance” to P.G.-P. The computational support of the “Centro de Computación Científica CCC-UAM” is gratefully recognized. This work was also partially supported by Spanish Instituto de Salud Carlos III, Fondo de Investigaciones Sanitarias co-funded with ERDF funds, Grant No. FIS PI20/01767) to A.P. and by Spanish Instituto de Salud Carlos III, Fondo de Investigaciones Sanitarias co-funded with ERDF funds, Grant No. FIS PI18/000687 to E.F.T

    Deep Molecular Characterization of Milder Spinal Muscular Atrophy Patients Carrying the c.859G>C Variant in SMN2

    Get PDF
    Next-generation sequencing; Phenotype–genotype correlations; Spinal muscular atrophySeqüenciació de nova generació; Correlacions fenotip-genotip; Atròfia muscular espinalSecuenciación de nueva generación; Correlaciones fenotipo-genotipo; Atrofia muscular espinalSpinal muscular atrophy (SMA) is a severe neuromuscular disorder caused by biallelic loss or pathogenic variants in the SMN1 gene. Copy number and modifier intragenic variants in SMN2, an almost identical paralog gene of SMN1, are known to influence the amount of complete SMN proteins. Therefore, SMN2 is considered the main phenotypic modifier of SMA, although genotype–phenotype correlation is not absolute. We present eleven unrelated SMA patients with milder phenotypes carrying the c.859G>C-positive modifier variant in SMN2. All were studied by a specific NGS method to allow a deep characterization of the entire SMN region. Analysis of two homozygous cases for the variant allowed us to identify a specific haplotype, Smn2-859C.1, in association with c.859G>C. Two other cases with the c.859G>C variant in their two SMN2 copies showed a second haplotype, Smn2-859C.2, in cis with Smn2-859C.1, assembling a more complex allele. We also identified a previously unreported variant in intron 2a exclusively linked to the Smn2-859C.1 haplotype (c.154-1141G>A), further suggesting that this region has been ancestrally conserved. The deep molecular characterization of SMN2 in our cohort highlights the importance of testing c.859G>C, as well as accurately assessing the SMN2 region in SMA patients to gain insight into the complex genotype–phenotype correlations and improve prognostic outcomes.This research was funded by grants from Biogen (ESP-SMG-17-11256), Roche, GaliciAME and Spanish Instituto de Salud Carlos III, Fondo de Investigaciones Sanitarias and co-funded with ERDF funds (grant no. FIS PI18/000687). A grant from Horizon 2020 IMI2 Screen4Care is acknowledged by E.B., and L.T., E.F.T., R.J., J.S., L.C.-C., F.M., E.B., and L.T. are members of the ERN NMD Network for Rare Diseases. E.F.T. is a member of the ERN ITHACA Network for Rare Diseases
    corecore