64 research outputs found

    Realistic time-scale fully atomistic simulations of surface nucleation of dislocations in pristine nanopillars

    Get PDF
    We use our recently proposed accelerated dynamics algorithm (Tiwary and van de Walle, 2011) to calculate temperature and stress dependence of activation free energy for surface nucleation of dislocations in pristine Gold nanopillars under realistic loads. While maintaining fully atomistic resolution, we achieve the fraction of a second time-scale regime. We find that the activation free energy depends significantly and non-linearly on the driving force (stress or strain) and temperature, leading to very high activation entropies. We also perform compression tests on Gold nanopillars for strain-rates varying between 7 orders of magnitudes, reaching as low as 10^3/s. Our calculations bring out the perils of high strain-rate Molecular Dynamics calculations: we find that while the failure mechanism for compression of Gold nanopillars remains the same across the entire strain-rate range, the elastic limit (defined as stress for nucleation of the first dislocation) depends significantly on the strain-rate. We also propose a new methodology that overcomes some of the limits in our original accelerated dynamics scheme (and accelerated dynamics methods in general). We lay out our methods in sufficient details so as to be used for understanding and predicting deformation mechanism under realistic driving forces for various problems

    Hybrid deterministic and stochastic approach for efficient atomistic simulations at long time scales

    Get PDF
    We propose a hybrid deterministic and stochastic approach to achieve extended time scales in atomistic simulations that combines the strengths of molecular dynamics (MD) and Monte Carlo (MC) simulations in an easy-to-implement way. The method exploits the rare event nature of the dynamics similar to most current accelerated MD approaches but goes beyond them by providing, without any further computational overhead, (a) rapid thermalization between infrequent events, thereby minimizing spurious correlations, and (b) control over accuracy of time-scale correction, while still providing similar or higher boosts in computational efficiency. We present two applications of the method: (a) Vacancy-mediated diffusion in Fe yields correct diffusivities over a wide range of temperatures and (b) source-controlled plasticity and deformation behavior in Au nanopillars at realistic strain rates (10^4/s and lower), with excellent agreement with previous theoretical predictions and in situ high-resolution transmission electron microscopy observations. The method gives several orders-of-magnitude improvements in computational efficiency relative to standard MD and good scalability with the size of the system.Comment: 4 pages, 2 figures. Corrected logarithm base in figures 2 and
    • …
    corecore