3 research outputs found

    Mechanoelectric Transduction in Ionic Polymer-Metal Composite

    Full text link
    The ability of ionic polymer-metal composite (IPMC) to generate current on mechanical deformation, defined as mechanoelectric transduction, can be exploited for design and development of numerous sensors and energy harvesters. However, sensor application of IPMC is currently limited due to the lack of understanding of the transduction mechanism. This paper presents a physics-based mechanoelectric model that takes into account material properties, electrostatic phenomenon, and ion transport in the IPMC. Experimental verification of the model predictions is also reported

    IPMC as a Mechanoelectric Energy Harvester: Tailored Properties

    Full text link
    Due to their inherited mechanoelectric transduction capability, long-life, and effective operation in both air and water, ionic polymer–metal composites (IPMCs) are considered for energy harvesting applications. The reported research aims to study different parameters in the mechanical domain (stiffness and scalability) and the electrical domain (impedance and interfacial area) that seem to have profound effects on battery charging, with the aid of an electromechanical transducer model (Tiwariet al 2008 Smart Struct. Syst. 4 549–3). Experiments performed to confirm the model predictions are also reported. The research demonstrates the applicability of IPMC as an energy harvester in lower frequency regions (\u3c50 \u3eHz) with an average efficiency of around 2% or less. The instantaneous power output from 10 mm (width)×50 mm (length)×0.2 mm (thickness) was measured to be approximately 4 μW (20 W m−3)
    corecore