22 research outputs found

    Reducing Cascading Failure Risk by Increasing Infrastructure Network Interdependency

    Full text link
    Increased coupling between critical infrastructure networks, such as power and communication systems, will have important implications for the reliability and security of these systems. To understand the effects of power-communication coupling, several have studied interdependent network models and reported that increased coupling can increase system vulnerability. However, these results come from models that have substantially different mechanisms of cascading, relative to those found in actual power and communication networks. This paper reports on two sets of experiments that compare the network vulnerability implications resulting from simple topological models and models that more accurately capture the dynamics of cascading in power systems. First, we compare a simple model of topological contagion to a model of cascading in power systems and find that the power grid shows a much higher level of vulnerability, relative to the contagion model. Second, we compare a model of topological cascades in coupled networks to three different physics-based models of power grids coupled to communication networks. Again, the more accurate models suggest very different conclusions. In all but the most extreme case, the physics-based power grid models indicate that increased power-communication coupling decreases vulnerability. This is opposite from what one would conclude from the coupled topological model, in which zero coupling is optimal. Finally, an extreme case in which communication failures immediately cause grid failures, suggests that if systems are poorly designed, increased coupling can be harmful. Together these results suggest design strategies for reducing the risk of cascades in interdependent infrastructure systems

    Price Discovery and the Accuracy of Consolidated Data Feeds in the U.S. Equity Markets

    Full text link
    Both the scientific community and the popular press have paid much attention to the speed of the Securities Information Processor, the data feed consolidating all trades and quotes across the US stock market. Rather than the speed of the Securities Information Processor, or SIP, we focus here on its accuracy. Relying on Trade and Quote data, we provide various measures of SIP latency relative to high-speed data feeds between exchanges, known as direct feeds. We use first differences to highlight not only the divergence between the direct feeds and the SIP, but also the fundamental inaccuracy of the SIP. We find that as many as 60 percent or more of trades are reported out of sequence for stocks with high trade volume, therefore skewing simple measures such as returns. While not yet definitive, this analysis supports our preliminary conclusion that the underlying infrastructure of the SIP is currently unable to keep pace with the trading activity in today's stock market.Comment: 18 pages, 20 figures, 2 table

    Adaptive Agents and Data Quality in Agent-Based Financial Markets

    Full text link
    We present our Agent-Based Market Microstructure Simulation (ABMMS), an Agent-Based Financial Market (ABFM) that captures much of the complexity present in the US National Market System for equities (NMS). Agent-Based models are a natural choice for understanding financial markets. Financial markets feature a constrained action space that should simplify model creation, produce a wealth of data that should aid model validation, and a successful ABFM could strongly impact system design and policy development processes. Despite these advantages, ABFMs have largely remained an academic novelty. We hypothesize that two factors limit the usefulness of ABFMs. First, many ABFMs fail to capture relevant microstructure mechanisms, leading to differences in the mechanics of trading. Second, the simple agents that commonly populate ABFMs do not display the breadth of behaviors observed in human traders or the trading systems that they create. We investigate these issues through the development of ABMMS, which features a fragmented market structure, communication infrastructure with propagation delays, realistic auction mechanisms, and more. As a baseline, we populate ABMMS with simple trading agents and investigate properties of the generated data. We then compare the baseline with experimental conditions that explore the impacts of market topology or meta-reinforcement learning agents. The combination of detailed market mechanisms and adaptive agents leads to models whose generated data more accurately reproduce stylized facts observed in actual markets. These improvements increase the utility of ABFMs as tools to inform design and policy decisions.Comment: 11 pages, 6 figures, and 1 table. Contains 12 pages of supplemental information with 1 figure and 22 table

    Revisiting Stylized Facts for Modern Stock Markets

    Full text link
    In 2001, Rama Cont introduced a now-widely used set of 'stylized facts' to synthesize empirical studies of financial time series, resulting in 11 qualitative properties presumed to be universal to all financial markets. Here, we replicate Cont's analyses for a convenience sample of stocks drawn from the U.S. stock market following a fundamental shift in market regulation. Our study relies on the same authoritative data as that used by the U.S. regulator. We find conclusive evidence in the modern market for eight of Cont's original facts, while we find weak support for one additional fact and no support for the remaining two. Our study represents the first test of the original set of 11 stylized facts against the same stocks, therefore providing insight into how Cont's stylized facts should be viewed in the context of modern stock markets.Comment: 19 pages, 11 figure

    Fragmentation and inefficiencies in US equity markets: Evidence from the Dow 30

    Get PDF
    Using the most comprehensive source of commercially available data on the US National Market System, we analyze all quotes and trades associated with Dow 30 stocks in calendar year 2016 from the vantage point of a single and fixed frame of reference. We find that inefficiencies created in part by the fragmentation of the equity marketplace are relatively common and persist for longer than what physical constraints may suggest. Information feeds reported different prices for the same equity more than 120 million times, with almost 64 million dislocation segments featuring meaningfully longer duration and higher magnitude. During this period, roughly 22% of all trades occurred while the SIP and aggregated direct feeds were dislocated. The current market configuration resulted in a realized opportunity cost totaling over $160 million, a conservative estimate that does not take into account intra-day offsetting events

    Reply to Garcia et al.: Common mistakes in measuring frequency-dependent word characteristics

    Get PDF
    We demonstrate that the concerns expressed by Garcia et al. are misplaced, due to (1) a misreading of our findings in [1]; (2) a widespread failure to examine and present words in support of asserted summary quantities based on word usage frequencies; and (3) a range of misconceptions about word usage frequency, word rank, and expert-constructed word lists. In particular, we show that the English component of our study compares well statistically with two related surveys, that no survey design influence is apparent, and that estimates of measurement error do not explain the positivity biases reported in our work and that of others. We further demonstrate that for the frequency dependence of positivity---of which we explored the nuances in great detail in [1]---Garcia et al. did not perform a reanalysis of our data---they instead carried out an analysis of a different, statistically improper data set and introduced a nonlinearity before performing linear regression.Comment: 5 pages, 2 figures, 1 table. Expanded version of reply appearing in PNAS 201

    Human language reveals a universal positivity bias

    Get PDF
    Using human evaluation of 100,000 words spread across 24 corpora in 10 languages diverse in origin and culture, we present evidence of a deep imprint of human sociality in language, observing that (i ) the words of natural human language possess a universal positivity bias, (ii ) the estimated emotional content of words is consistent between languages under translation, and (iii ) this positivity bias is strongly independent of frequency of word use. Alongside these general regularities, we describe interlanguage variations in the emotional spectrum of languages that allow us to rank corpora. We also show how our word evaluations can be used to construct physical-like instruments for both real-time and offline measurement of the emotional content of large-scale texts
    corecore