8 research outputs found

    ERK inhibitor LY3214996-based treatment strategies for RAS-driven lung cancer

    Get PDF
    RAS gene mutations are the most frequent oncogenic event in lung cancer. They activate multiple RAS-centric signaling networks among them the MAPK, PI3K and RB pathways. Within the MAPK pathway ERK1/2 proteins exert a bottleneck function for transmitting mitogenic signals and activating cytoplasmic and nuclear targets. In view of disappointing anti-tumor activity and toxicity of continuously applied MEK inhibitors in patients with KRAS mutant lung cancer, research has recently focused on ERK1/2 proteins as therapeutic targets and on ERK inhibitors for their ability to prevent bypass and feedback pathway activation. Here we show that intermittent application of the novel and selective ATP-competitive ERK1/2 inhibitor LY3214996 exerts single-agent activity in patient-derived xenograft (PDX) models of RAS mutant lung cancer. Combination treatments were well tolerated and resulted in synergistic (ERKi plus PI3K/mTORi LY3023414) and additive (ERKi plus CDK4/6i abemaciclib) tumor growth inhibition in PDX models. Future clinical trials are required to investigate if intermittent ERK inhibitor-based treatment schedules can overcome toxicities observed with continuous MEK inhibition and - equally important - to identify biomarkers for patient stratification

    Design and implementation of the canadian kidney disease cohort study (CKDCS): A prospective observational study of incident hemodialysis patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many nephrology observational studies use renal registries, which have well known limitations. The Canadian Kidney Disease Cohort Study (CKDCS) is a large prospective observational study of patients commencing hemodialysis in five Canadian centers. This study focuses on delineating potentially reversible determinants of adverse outcomes that occur in patients receiving dialysis for end-stage renal disease (ESRD).</p> <p>Methods/Design</p> <p>The CKDCS collects information on risk factors and outcomes, and stores specimens (blood, dialysate, hair and fingernails) at baseline and in long-term follow-up. Such specimens will permit measurements of biochemical markers, proteomic and genetic parameters (proteins and DNA) not measured in routine care. To avoid selection bias, all consenting incident hemodialysis patients at participating centers are enrolled, the large sample size (target of 1500 patients), large number of exposures, and high event rates will permit the exploration of multiple potential research questions.</p> <p>Preliminary Results</p> <p>Data on the baseline characteristics from the first 1074 subjects showed that the average age of patients was 62 (range; 50-73) years. The leading cause of ESRD was diabetic nephropathy (41.9%), and the majority of the patients were white (80.0%). Only 18.7% of the subjects received dialysis in a satellite unit, and over 80% lived within a 50 km radius of the nearest nephrologist's practice.</p> <p>Discussion</p> <p>The prospective design, detailed clinical information, and stored biological specimens provide a wealth of information with potential to greatly enhance our understanding of risk factors for adverse outcomes in dialysis patients. The scientific value of the stored patient tissue will grow as new genetic and biochemical markers are discovered in the future.</p

    Neuronal differentiation and cell-cycle programs mediate response to BET-bromodomain inhibition in MYC-driven medulloblastoma

    Full text link
    BET-bromodomain inhibition (BETi) has shown pre-clinical promise for MYC-amplified medulloblastoma. However, the mechanisms for its action, and ultimately for resistance, have not been fully defined. Here, using a combination of expression profiling, genome-scale CRISPR/Cas9-mediated loss of function and ORF/cDNA driven rescue screens, and cell-based models of spontaneous resistance, we identify bHLH/homeobox transcription factors and cell-cycle regulators as key genes mediating BETi’s response and resistance. Cells that acquire drug tolerance exhibit a more neuronally differentiated cell-state and expression of lineage-specific bHLH/homeobox transcription factors. However, they do not terminally differentiate, maintain expression of CCND2, and continue to cycle through S-phase. Moreover, CDK4/CDK6 inhibition delays acquisition of resistance. Therefore, our data provide insights about the mechanisms underlying BETi effects and the appearance of resistance and support the therapeutic use of combined cell-cycle inhibitors with BETi in MYC-amplified medulloblastoma
    corecore