93 research outputs found
Recommended from our members
Splanchnic metabolism of nutrients and hormones in steers fed alfalfa under conditions of increased absorption of ammonia and L-arginine supply across the portal-drained viscera
Effects of increased ammonia and/or arginine
absorption on net splanchnic (portal-drained viscera
[PDV] plus liver) metabolism of nonnitrogenous
nutrients and hormones in cattle were examined. Six
Hereford × Angus steers (501 ± 1 kg BW) prepared with
vascular catheters for measurements of net flux across
the splanchnic bed were fed a 75% alfalfa:25% (as-fed
basis) corn and soybean meal diet (0.523 MJ of ME/[kg
BW0.75.d]) every 2 h without (27.0 g of N/kg of DM) and
with 20 g of urea/kg of DM (35.7 g of N/kg of DM) in a
split-plot design. Net flux measurements were made
immediately before and after a 72-h mesenteric vein
infusion of L-arginine (15 mmol/h). There were no treatment
effects onPDVor hepaticO2 consumption. Dietary
urea had no effect on splanchnic metabolism of glucose
or L-lactate, but arginine infusion decreased net hepatic
removal of L-lactate when urea was fed (P < 0.01). Net PDV appearance of n-butyrate was increased by arginine
infusion (P < 0.07), and both dietary urea (P <
0.09) and arginine infusion (P < 0.05) increased net
hepatic removal of n-butyrate. Dietary urea also increased
total splanchnic acetate output (P < 0.06),
tended to increase arterial glucagon concentration (P
< 0.11), and decreased arterial ST concentration (P <
0.03). Arginine infusion increased arterial concentration
(P < 0.07) and net PDV release (P < 0.10) and
tended to increase hepatic removal (P < 0.11) of insulin,
as well as arterial concentration (P < 0.01) and total
splanchnic output (P < 0.01) of glucagon. Despite
changes in splanchnic N metabolism, increased ammonia
and arginine absorption had little measurable effect
on splanchnic metabolism of glucose and other nonnitrogenous
components of splanchnic energy metabolism
Psychological distress among primary school teachers: a comparison with clinical and population samples
This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.Objectives: This analysis explored the level of psychological distress among primary school teachers
in the South West of England as compared to clinical and general population samples.
Study design: Secondary analysis of data from the Supporting Teachers And childRen in Schools
(STARS) trial completed by up to 90 teachers at baseline, 9, 18 and 30 months of follow up.
Methods: We used the Everyday Feelings Questionnaire (EFQ) as a measure of psychological
distress. Baseline data on teachers were compared with a population sample of professionals and a
clinical sample of patients attending a depression clinic.
Results: Our teacher cohort experienced higher levels of psychological distress than comparable
professionals from the general population, which were sustained over 30 months follow-up. Levels
of psychological distress were lower than those found in the clinical sample. Using a cut-point
indicative of moderate depression, our data suggest between 19% and 29% of teachers experienced
clinically significant distress at each time-point.
Conclusions: We detected high and sustained levels of psychological distress among primary school
teachers, which suggests an urgent need for intervention. Effective support for teachers’ mental
health is particularly important given the potential impact of poor teacher mental health on pupil
wellbeing, pupil attainment and teacher-pupil relationships.The STARS trial was funded by the National Institute for Health Research Public Health Research
Programme (project number 10/3006/07) and the National Institute for Health Research (NIHR)
Collaboration for Leadership in Applied Health Research and Care South West Peninsula
A RecB-family nuclease motif in the Type I restriction endonuclease EcoR124I
The Type I restriction-modification enzyme EcoR124I is an ATP-dependent endonuclease that uses dsDNA translocation to locate and cleave distant non-specific DNA sites. Bioinformatic analysis of the HsdR subunits of EcoR124I and related Type I enzymes showed that in addition to the principal PD-(E/D)xK Motifs, I, II and III, a QxxxY motif is also present that is characteristic of RecB-family nucleases. The QxxxY motif resides immediately C-terminal to Motif III within a region of predicted α-helix. Using mutagenesis, we examined the role of the Q and Y residues in DNA binding, translocation and cleavage. Roles for the QxxxY motif in coordinating the catalytic residues or in stabilizing the nuclease domain on the DNA are discussed
Case Report: ISG15 deficiency caused by novel variants in two families and effective treatment with Janus kinase inhibition
ISG15 deficiency is a rare disease caused by autosomal recessive variants in the ISG15 gene, which encodes the ISG15 protein. The ISG15 protein plays a dual role in both the type I and II interferon (IFN) immune pathways. Extracellularly, the ISG15 protein is essential for IFN-γ-dependent anti-mycobacterial immunity, while intracellularly, ISG15 is necessary for USP18-mediated downregulation of IFN-α/β signalling. Due to this dual role, ISG15 deficiency can present with various clinical phenotypes, ranging from susceptibility to mycobacterial infection to autoinflammation characterised by necrotising skin lesions, intracerebral calcification, and pulmonary involvement. In this report, we describe novel variants found in two different families that result in complete ISG15 deficiency and severe skin ulceration. Whole exome sequencing identified a heterozygous missense p.Q16X ISG15 variant and a heterozygous multigene 1p36.33 deletion in the proband from the first family. In the second family, a homozygous total ISG15 gene deletion was detected in two siblings. We also conducted further analysis, including characterisation of cytokine dysregulation, interferon-stimulated gene expression, and p-STAT1 activation in lymphocytes and lesional tissue. Finally, we demonstrate the complete and rapid resolution of clinical symptoms associated with ISG15 deficiency in one sibling from the second family following treatment with the Janus kinase (JAK) inhibitor baricitinib
Pro-inflammatory endothelial cell dysfunction is associated with intersectin-1s down-regulation
<p>Abstract</p> <p>Background</p> <p>The response of lung microvascular endothelial cells (ECs) to lipopolysaccharide (LPS) is central to the pathogenesis of lung injury. It is dual in nature, with one facet that is pro-inflammatory and another that is cyto-protective. In previous work, overexpression of the anti-apoptotic Bcl-X<sub>L</sub> rescued ECs from apoptosis triggered by siRNA knockdown of intersectin-1s (ITSN-1s), a pro-survival protein crucial for ECs function. Here we further characterized the cyto-protective EC response to LPS and pro-inflammatory dysfunction.</p> <p>Methods and Results</p> <p>Electron microscopy (EM) analyses of LPS-exposed ECs revealed an activated/dysfunctional phenotype, while a biotin assay for caveolae internalization followed by biochemical quantification indicated that LPS causes a 40% inhibition in biotin uptake compared to controls. Quantitative PCR and Western blotting were used to evaluate the mRNA and protein expression, respectively, for several regulatory proteins of intrinsic apoptosis, including ITSN-1s. The decrease in ITSN-1s mRNA and protein expression were countered by Bcl-X<sub>L</sub> and survivin upregulation, as well as Bim downregulation, events thought to protect ECs from impending apoptosis. Absence of apoptosis was confirmed by TUNEL and lack of cytochrome c (cyt c) efflux from mitochondria. Moreover, LPS exposure caused induction and activation of inducible nitric oxide synthase (iNOS) and a mitochondrial variant (mtNOS), as well as augmented mitochondrial NO production as measured by an oxidation oxyhemoglobin (oxyHb) assay applied on mitochondrial-enriched fractions prepared from LPS-exposed ECs. Interestingly, expression of myc-ITSN-1s rescued caveolae endocytosis and reversed induction of iNOS expression.</p> <p>Conclusion</p> <p>Our results suggest that ITSN-1s deficiency is relevant for the pro-inflammatory ECs dysfunction induced by LPS.</p
Seminaphthofluorescein-Based Fluorescent Probes for Imaging Nitric Oxide in Live Cells
Fluorescent turn-on probes for nitric oxide based on seminaphthofluorescein scaffolds were prepared and spectroscopically characterized. The Cu(II) complexes of these fluorescent probes react with NO under anaerobic conditions to yield a 20–45-fold increase in integrated emission. The seminaphthofluorescein-based probes emit at longer wavelengths than the parent FL1 and FL2 fluorescein-based generations of NO probes, maintaining emission maxima between 550 and 625 nm. The emission profiles depend on the excitation wavelength; maximum fluorescence turn-on is achieved at excitations between 535 and 575 nm. The probes are highly selective for NO over other biologically relevant reactive nitrogen and oxygen species including NO3–, NO2–, HNO, ONOO–, NO2, OCl–, and H2O2. The seminaphthofluorescein-based probes can be used to visualize endogenously produced NO in live cells, as demonstrated using Raw 264.7 macrophages.National Science Foundation (U.S.) (CHE-0611944)National Institutes of Health (U.S.) (K99GM092970
l-Tetrahydropalmatine, an Active Component of Corydalis yanhusuo W.T. Wang, Protects against Myocardial Ischaemia-Reperfusion Injury in Rats
l-Tetrahydropalmatine (l-THP) is an active ingredients of Corydalis yanhusuo W.T. Wang, which protects against acute global cerebral ischaemia-reperfusion injury. In this study, we show that l-THP is cardioprotective in myocardial ischaemia-reperfusion injury and examined the mechanism. Rats were treated with l-THP (0, 10, 20, 40 mg/kg b.w.) for 20 min before occlusion of the left anterior descending coronary artery and subjected to myocardial ischaemia-reperfusion (30 min/6 h). Compared with vehicle-treated animals, the infarct area/risk area (IA/RA) of l-THP (20, 40 mg/kg b.w.) treated rats was reduced, whilst l-THP (10 mg/kg b.w.) had no significant effect. Cardiac function was improved in l-THP-treated rats whilst plasma creatine kinase activity declined. Following treatment with l-THP (20 mg/kg b.w.), subunit of phosphatidylinositol 3-kinase p85, serine473 phosphorylation of Akt and serine1177 phosphorylation of endothelial NO synthase (eNOS) increased in myocardium, whilst expression of inducible NO synthase (iNOS) decreased. However, the expression of HIF-1α and VEGF were increased in I30 minR6 h, but decreased to normal level in I30 minR24 h, while treatment with l-THP (20 mg/kg b.w.) enhanced the levels of these two genes in I30 minR24 h. Production of NO in myocardium and plasma, activity of myeloperoxidase (MPO) in plasma and the expression of tumour necrosis factor-α (TNF-α) in myocardium were decreased by l-THP. TUNEL assay revealed that l-THP (20 mg/kg b.w.) reduced apoptosis in myocardium. Thus, we show that l-THP activates the PI3K/Akt/eNOS/NO pathway and increases expression of HIF-1α and VEGF, whilst depressing iNOS-derived NO production in myocardium. This effect may decrease the accumulation of inflammatory factors, including TNF-α and MPO, and lessen the extent of apoptosis, therefore contributing to the cardioprotective effects of l-THP in myocardial ischaemia-reperfusion injury
- …