559 research outputs found
A preliminary systems-engineering study of an advanced nuclear-electrolytic hydrogen-production facility
An advanced nuclear-electrolytic hydrogen-production facility concept was synthesized at a conceptual level with the objective of minimizing estimated hydrogen-production costs. The concept is a closely-integrated, fully-dedicated (only hydrogen energy is produced) system whose components and subsystems are predicted on ''1985 technology.'' The principal components are: (1) a high-temperature gas-cooled reactor (HTGR) operating a helium-Brayton/ammonia-Rankine binary cycle with a helium reactor-core exit temperature of 980 C, (2) acyclic d-c generators, (3) high-pressure, high-current-density electrolyzers based on solid-polymer electrolyte technology. Based on an assumed 3,000 MWt HTGR the facility is capable of producing 8.7 million std cu m/day of hydrogen at pipeline conditions, 6,900 kPa. Coproduct oxygen is also available at pipeline conditions at one-half this volume. It has further been shown that the incorporation of advanced technology provides an overall efficiency of about 43 percent, as compared with 25 percent for a contemporary nuclear-electric plant powering close-coupled contemporary industrial electrolyzers
Solar/hydrogen systems assessment. Volume 1: Solar/hydrogen systems for the 1985 - 2000 time frame
Opportunities for commercialization of systems capable of producing hydrogen from solar energy were studied. The hydrogen product costs that might be achieved by the four selected candidate systems was compared with the pricing structure and practices of the commodity gas market. Subsequently, product cost and market price match was noted to exist in the small user sector of the hydrogen marketplace. Barriers to and historical time lags in, commercialization of new technologies are reviewed. Recommendations for development and demonstration programs designed to accelerate the commercialization of the candidate systems are presented
High-temperature molten salt thermal energy storage systems
The results of comparative screening studies of candidate molten carbonate salts as phase change materials (PCM) for advanced solar thermal energy storage applications at 540 to 870 C (1004 to 1600 F) and steam Rankine electric generation at 400 to 540 C (752 to 1004 F) are presented. Alkali carbonates are attractive as latent heat storage materials because of their relatively high storage capacity and thermal conductivity, low corrosivity, moderate cost, and safe and simple handling requirements. Salts were tested in 0.1 kWhr lab scale modules and evaluated on the basis of discharge heat flux, solidification temperature range, thermal cycling stability, and compatibility with containment materials. The feasibility of using a distributed network of high conductivity material to increase the heat flux through the layer of solidified salt was evaluated. The thermal performance of an 8 kWhr thermal energy storage (TES) module containing LiKCO3 remained very stable throughout 5650 hours and 130 charge/discharge cycles at 480 to 535 C (896 to 995 F). A TES utilization concept of an electrical generation peaking subsystem composed of a multistage condensing steam turbine and a TES subsystem with a separate power conversion loop was defined. Conceptual designs for a 100 MW sub e TES peaking system providing steam at 316 C, 427 C, and 454 C (600 F, 800 F, and 850 F) at 3.79 million Pa (550 psia) were developed and evaluated. Areas requiring further investigation have also been identified
Study of Systems and Technology for Liquid Hydrogen Production Independent of Fossil Fuels
Based on Kennedy Space Center siting and logistics requirements and the nonfossil energy resources at the Center, a number of applicable technologies and system candidates for hydrogen production were identified and characterized. A two stage screening of these technologies in the light of specific criteria identified two leading candidates as nonfossil system approaches. Conceptual design and costing of two solar-operated, stand alone systems, one photovoltaic based on and the other involving the power tower approach reveals their technical feasibility as sited as KSC, and the potential for product cost competitiveness with conventional supply approaches in the 1990 to 1210 time period. Conventional water hydrolysis and hydrogen liquefaction subsystems are integrated with the solar subsystems
Vibrations In Reciprocating Machinery And Piping Systems.
Tutorialpg. 243-272A wide variety of vibration and failure problems occur in reciprocating machinery and piping systems. Excessive piping vibration problems usually occur when a mechanical natural frequency of the piping system or compressor manifold system is excited by a pulsation or mechanical excitation source. Since reciprocating compressors and pumps generate high pulsation levels at numerous harmonics, which in turn produce shaking forces, vibration and failure problems in these systems are common. Other problems, not associated with the piping, can be encountered with the compressor/engine frame foundation and anchoring systems. These can lead to failures of the bearings and crankshaft. In addition, special problems can occur due to the torsional natural frequencies and the high harmonic torques, due to the compressor loading. Whenever high vibrations are encountered in reciprocating compressors, pumps and/or piping, it is necessary to determine if the vibrations and dynamic stresses are acceptable. Criteria to judge the acceptability of the vibrations are presented in this paper, along with troubleshooting methods to determine if the problems are caused by pulsation or mechanical resonances. The basic principles of pulsation generation and control are presented. The key to designing and operating safe piping systems is to control the pulsation levels and separate the mechanical natural frequencies from the pulsation excitation frequencies
CO2 and CH4 in sea ice from a subarctic fjord under influence of riverine input
We present the CH4 concentration [CH4], the partial pressure of CO2 (pCO2) and the total gas content in bulk sea ice from subarctic, land-fast sea ice in the Kapisillit fjord, Greenland. Fjord systems are characterized by freshwater runoff and riverine input and based on dδ18O data, we show that > 30% of the surface water originated from periodic river input during ice growth. This resulted in fresher sea-ice layers with higher gas content than is typical from marine sea ice. The bulk ice [CH4] ranged from 1.8 to 12.1 nmol Lg-1, which corresponds to a partial pressure ranging from 3 to 28 ppmv. This is markedly higher than the average atmospheric methane content of 1.9 ppmv. Evidently most of the trapped methane within the ice was contained inside bubbles, and only a minor portion was dissolved in the brines. The bulk ice pCO2 ranged from 60 to 330 ppmv indicating that sea ice at temperatures above -4 °C is undersaturated compared to the atmosphere (390 ppmv). This study adds to the few existing studies of CH4 and CO2 in sea ice, and we conclude that subarctic seawater can be a sink for atmospheric CO2, while being a net source of CH4
Melting and refreezing beneath Roi Baudouin Ice Shelf (East Antarctica) inferred from radar, GPS, and ice core data
Ice-penetrating radar profiles across the grounding line of a small ice-rise promontory located within the Roi Baudouin Ice Shelf in the Dronning Maud Land sector of East Antarctica show downward dipping englacial radar-detected reflectors. Model results indicate that this reflector pattern is best fit by including basal melting of at least 15 cm a-1. This rate of melting is low compared with rates observed on larger ice shelves in both West and East Antarctica. Ice cores extracted from a rift system close to the ice-rise promontory show several meters of marine ice accreted beneath the shelf. These observations of low rates of basal melting, and limited distribution of accreted marine ice suggest that either Antarctic surface water may reach the ice shelf base or that circulation beneath the shelf is likely dominated by the production of high salinity shelf water rather than the incursion of circumpolar deep water, implying a weak sub-shelf circulation system here. Many of the ice shelves located along the coast of Dronning Maud Land are, like Roi Baudouin Ice Shelf, characterized by frequent ice rises and promontories. Therefore, it is highly likely that these are also of shallow bathymetry and are subject to similarly weak side-shelf basal melting and refreezing
Geodesic and Path Motion in the Nonsymmetric Gravitational Theory
We study the problem of test-particle motion in the Nonsymmetric
Gravitational Theory (NGT) assuming the four-velocity of the particle is
parallel-transported along the trajectory. The predicted motion is studied on a
static, spherically symmetric background field, with particular attention paid
to radial and circular motions. Interestingly, it is found that the proper time
taken to travel between any two non-zero radial positions is finite. It is also
found that circular orbits can be supported at lower radii than in General
Relativity for certain forms of motion.
We present three interactions which could be used as alternate methods for
coupling a test-particle to the antisymmetric components of the NGT field. One
of these takes the form of a Yukawa force in the weak-field limit of a static,
spherically symmetric field, which could lead to interesting phenomenology.Comment: 17 pages, REVTeX 3.0 with amssymb.st
Gas diffusion through columnar laboratory sea ice: implications for mixed-layer ventilation of CO<sub>2</sub> in the seasonal ice zone
Gas diffusion through the porous microstructure of sea ice represents a pathway for ocean–atmosphere exchange and for transport of biogenic gases produced within sea ice. We report on the experimental determination of the bulk gas diffusion coefficients, D, for oxygen (O2) and sulphur hexafluoride (SF6) through columnar sea ice under constant ice thickness conditions for ice surface temperatures between -4 and -12 °C. Profiles of SF6 through the ice indicate decreasing gas concentration from the ice/water interface to the ice/air interface, with evidence for solubility partitioning between gas-filled and liquid-filled pore spaces. On average, DSF6 inline image was 1.3 × 10-4 cm2 s-1 (±40%) and DO2 was 3.9 × 10-5 cm2 s-1 (±41%). The preferential partitioning of SF6 to the gas phase, which is the dominant diffusion pathway produced the greater rate of SF6 diffusion. Comparing these estimates of D with an existing estimate of the air–sea gas transfer through leads indicates that ventilation of the mixed layer by diffusion through sea ice may be negligible, compared to air–sea gas exchange through fractures in the ice pack, even when the fraction of open water is less than 1%
Linearisation Instabilities of the Massive Nonsymmetric Gravitational Theory
The massive nonsymmetric gravitational theory is shown to posses a
linearisation instability at purely GR field configurations, disallowing the
use of the linear approximation in these situations. It is also shown that
arbitrarily small antisymmetric sector Cauchy data leads to singular evolution
unless an ad hoc condition is imposed on the initial data hypersurface.Comment: 14 pages, IOP style for submission to CQG. Minor changes and
additional background material adde
- …