36 research outputs found

    Negativity vs Entropy in Entanglement Witnessing

    Full text link
    In this work, we prove that while all measures of mixedness can be used to witness entanglement, no measure of mixedness is more sensitive than the negativity of the partial transpose. However, computing either the negativity or differences between von Neumann entropies to witness entanglement requires complete knowledge of the joint density matrix (and is therefore not practical at high dimension). In light of this, we examine joint vs marginal purities as a witness of entanglement, (which can be obtained directly through interference measurements) and find that comparing purities is actually more sensitive at witnessing entanglement than using von Neumann entropies while also providing tight upper and lower bounds to it in the high-entanglement limit.Comment: 4 pages, 1 figur

    Unconditional remote entanglement using second-harmonic generation and twin two-mode squeezed vacuum states

    Full text link
    We propose a photonics-based, continuous-variable (CV) form of remote entanglement utilizing strictly second-order nonlinear optical interactions that does not require the implementation of a state-projective measurement (i.e. remote entanglement without conditioning). This scheme makes use of two separate down-converters, wherein the corresponding nonlinear crystals are driven by strong classical fields as prescribed by the parametric approximation, as well as a fully quantum mechanical model of nondegenerate second harmonic generation (SHG) whose evolution is described by the trilinear Hamiltonian of the form H^shg=iκ(a^b^c^a^b^c^)\hat{H}_{\text{shg}} = i\hbar\kappa\big(\hat{a}\hat{b}\hat{c}^{\dagger} - \hat{a}^{\dagger}\hat{b}^{\dagger}\hat{c}\big). By driving the SHG process with the signal modes of the two down-converters, we show entanglement formation between the generated second-harmonic mode (SH-mode) and the non-interacting joint-idler subsystem without the need for any state-reductive measurements on the interacting modes

    Quantifying Tri-partite Entanglement with Entropic Correlations

    Full text link
    We show how to quantify tri-partite entanglement using entropies derived from experimental correlations. We use a multi-partite generalization of the entanglement of formation that is greater than zero if and only if the state is genuinely multi-partite entangled. We develop an entropic witness for tripartite entanglement, and show that the degree of violation of this witness places a lower limit on the tripartite entanglement of formation. We test our results in the three-qubit regime using the GHZ-Werner state and the W-Werner state, and in the high-dimensional pure-state regime using the triple-Gaussian wavefunction describing the spatial and energy-time entanglement in photon triplets generated in third-order spontaneous parametric down-conversion. In addition, we discuss the challenges in quantifying the entanglement for progressively larger numbers of parties, and give both entropic and target-state-based witnesses of multi-partite entanglement that circumvent this issue.Comment: 14 pages, 6 figures (removed inequality (formerly appendix B4) due to typo

    Quantifying Entanglement in a 68-billion Dimensional Quantum State Space

    Get PDF
    Entanglement is the powerful and enigmatic resource central to quantum information processing, which promises capabilities in computing, simulation, secure communication, and metrology beyond what is possible for classical devices. Exactly quantifying the entanglement of an unknown system requires completely determining its quantum state, a task which demands an intractable number of measurements even for modestly-sized systems. Here we demonstrate a method for rigorously quantifying high-dimensional entanglement from extremely limited data. We improve an entropic, quantitative entanglement witness to operate directly on compressed experimental data acquired via an adaptive, multilevel sampling procedure. Only 6,456 measurements are needed to certify an entanglement-of-formation of 7.11 ± .04 ebits shared by two spatially-entangled photons. With a Hilbert space exceeding 68 billion dimensions, we need 20-million-times fewer measurements than the uncompressed approach and 1018-times fewer measurements than tomography. Our technique offers a universal method for quantifying entanglement in any large quantum system shared by two parties

    Nonlinear Photon Pair Generation in a Highly Dispersive Medium

    Get PDF
    Photon pair generation in silicon photonic integrated circuits relies on four wave mixing via the third order nonlinearity. Due to phase matching requirements and group velocity dispersion, this method has typically required TE polarized light. Here, we demonstrate TM polarized photon pair production in linearly uncoupled silicon resonators with more than an order of magnitude more dispersion than previous work. We achieve measured rates above 2.8 kHz and a heralded second order correlation of . This method enables phase matching in dispersive media and paves the way for novel entanglement generation in silicon photonic device
    corecore