4 research outputs found

    Are inert glasses really inert?

    Get PDF
    Abstract Objectives The aim of this study was to investigate the degradation of inert glass fillers which are commonly used in conventional resin-based composites to provide radiopacity, reduce the polymerization shrinkage and improve the mechanical properties. Methods 75 mg of five different glass powders (1 µm) was immersed separately into 50 mL of acetic acid (pH 4) and tris buffer (pH 7.4) for up to 4 weeks. At each time point the glass powder was filtered and dried for characterization using ATR-FTIR and XRD to assess the degradation behavior and crystallization. ICP-OES, ISE and pH measurements were performed on the supernatant solutions to monitor the pH and ion release. Results Although FTIR and XRD analysis showed no significant glass degradation or crystallization upon immersion, there was a substantial release of ions from the inert fillers, especially from BABFG and CDL. Barium release for these fillers were 270 and 165 ppm respectively. G018–373 glass presented the lowest ion release followed by GM27884 and BABG. The ion release was more pronounced in acidic conditions compared to neutral conditions apart from the fluoride release. Significance Inert glasses are not as inert as previously thought. This may result in leaching of ions, potentially causing toxicity, reduction in mechanical properties, increased wear and subsequent failure of the composite material. The ions released from the inert glass may interfere with other glass fillers such as bioactive glass fillers, inhibiting degradation of the bioactive glass, beneficial ion release from the bioactive glass, pH neutralization and apatite formation

    A Potassium Based Fluorine Containing Bioactive Glass for Use as a Desensitizing Toothpaste

    Get PDF
    Potassium releasing bioactive glasses (BAGs) may offer improved relief for dentine hypersensitivity compared to conventional sodium containing BAGs by releasing K+ ions for nerve desensitization and occluding dentinal tubules to prevent fluid flow within dentinal tubules. Potassium oxide was substituted for sodium oxide on a molar basis in a fluoride containing BAG used in toothpastes for treating dentine hypersensitivity. The BAG powders were then immersed in an artificial saliva at pH 7 and tris buffer and the pH rise and ion release behavior were characterized by ICP-OES and ISE. The potassium and sodium containing BAGs were characterized by XRD, DSC, FTIR and NMR. Both BAGs presented amorphous diffraction patterns and the glass transition temperature of the potassium glass was higher than that of the sodium glass. The 31P MAS-NMR spectra indicated a peak at 2.7 ppm corresponding to apatite and a small peak at −103 ppm indicated crystallization to fluorapatite. Both BAGs dissolved and formed apatite at similar rates, although the dissolution of the potassium glass was slightly slower and it released less fluoride as a result of partial nanocrystallization to fluorapatite upon quenching. The potassium release from the potassium ions could potentially result in nerve deactivation when used in toothpastes

    The use of bioactive glass (BAG) in dental composites: A critical review.

    No full text
    OBJECTIVE: In recent years, numerous studies have analyzed the role of bioactive glass (BAG) as remineralizing additives in dental restorative composites. This current review provides a critical analysis of the existing literature, particularly focusing on BAGs prepared via the melt-quench route that form an "apatite-like" phase when immersed in physiological-like solutions. METHODS: Online databases (Science Direct, PubMed and Google Scholar) were used to collect data published from 1962 to 2020. The research papers were analyzed and the relevant papers were selected for this review. Sol-gel BAGs were not included in this review since it is not a cost-effective manufacturing technique that can be upscaled and is difficult to incorporate fluoride. RESULTS: BAGs release Ca2+, PO43- and F- ions, raise the pH and form apatite. There are numerous published papers on the bioactivity of BAGs, but the different glass compositions, volume fractions, particle sizes, immersion media, time points, and the characterization techniques used, make comparison difficult. Several papers only use certain characterization techniques that do not provide a full picture of the behavior of the glass. It was noted that in most studies, mechanical properties were measured on dry samples, which does not replicate the conditions in the oral environment. Therefore, it is recommended that samples should be immersed for longer time periods in physiological solutions to mimic clinical environments. SIGNIFICANCE: BAGs present major benefits in dentistry, especially their capacity to form apatite, which could potentially fill any marginal gaps produced due to polymerization shrinkage
    corecore