14 research outputs found

    FUS and Excitotoxicity Cross Paths in ALS: New Insights into Cellular Stress and Disease

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is an incurable and fatal neurodegenerative disease characterized by motor neuron loss. Although pathological mutations exist in \u3e15 genes, the mechanism(s) underlying ALS are unknown. FUS is one such gene and encodes the nuclear RNA-binding protein (RBP), fused in sarcoma (FUS), which actively shuttles between the nucleus and cytoplasm. Intriguingly, nearly half of the ALS mutations identified in FUS cause this protein to mislocalize, suggesting that FUS localization is relevant to disease. Here, we found that excitotoxicity, a neuronal stress caused by aberrant glutamate signaling, induces the rapid redistribution of FUS and additional disease-linked RBPs from the nucleus to the cytoplasm. As excitotoxicity is pathologically associated with ALS, it was notable that the nuclear egress of FUS was particularly robust. Further, ALS-FUS variants that predominantly localize to the nucleus also undergo redistribution. Thus, we sought to understand the purpose underlying FUS translocation and the potential relevance of this response to disease. As calcium dysregulation is strongly associated with neurodegenerative disorders, we examined the contribution of calcium to FUS egress. In addition to global changes to nucleocytoplasmic transport following excitotoxic insult, we observed that FUS translocation caused by excitotoxicity is calcium mediated. Moreover, we found that dendritic expression of Gria2, a transcript encoding an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit responsible for regulating calcium permeability, is FUS-dependent under conditions of stress. Together, these observations support the premise that FUS has a normal function during excitotoxic stress and that glutamatergic signaling may be dysregulated in FUS-mediated ALS

    Abnormal mineralization of the Ts65Dn Down syndrome mouse appendicular skeleton begins during embryonic development in a Dyrk1a-independent manner

    Get PDF
    The relationship between gene dosage imbalance and phenotypes associated with Trisomy 21, including the etiology of abnormal bone phenotypes linked to Down syndrome (DS), is not well understood. The Ts65Dn mouse model for DS exhibits appendicular skeletal defects during adolescence and adulthood but the developmental and genetic origin of these phenotypes remains unclear. It is hypothesized that the postnatal Ts65Dn skeletal phenotype originates during embryonic development and results from an increased Dyrk1a gene copy number, a gene hypothesized to play a critical role in many DS phenotypes. Ts65Dn embryos exhibit a lower percent bone volume in the E17.5 femur when compared to euploid embryos. Concomitant with gene copy number, qPCR analysis revealed a  ~1.5 fold increase in Dyrk1a transcript levels in the Ts65Dn E17.5 embryonic femur as compared to euploid. Returning Dyrk1a copy number to euploid levels in Ts65Dn, Dyrk1a+/− embryos did not correct the trisomic skeletal phenotype but did return Dyrk1a gene transcript levels to normal. The size and protein expression patterns of the cartilage template during embryonic bone development appear to be unaffected at E14.5 and E17.5 in trisomic embryos. Taken together, these data suggest that the dosage imbalance of genes other than Dyrk1a is involved in the development of the prenatal bone phenotype in Ts65Dn embryos

    The RNA-binding protein FUS/TLS undergoes calcium-mediated nuclear egress during excitotoxic stress and is required for GRIA2 mRNA processing

    Get PDF
    Excitotoxic levels of glutamate represent a physiological stress that is strongly linked to amyotrophic lateral sclerosis (ALS) and other neurological disorders. Emerging evidence indicates a role for neurodegenerative disease-linked RNA-binding proteins (RBPs) in the cellular stress response. However, the relationships between excitotoxicity, RBP function, and disease have not been explored. Here, using primary cortical and motor neurons, we found that excitotoxicity induced the translocation of select ALS-linked RBPs from the nucleus to the cytoplasm within neurons. RBPs affected by excitotoxicity included TAR DNA-binding protein 43 (TDP-43) and, most robustly, fused in sarcoma/translocated in liposarcoma (FUS/TLS). We noted that FUS is translocated through a calcium-dependent mechanism and that its translocation coincides with striking alterations in nucleocytoplasmic transport. Further, glutamate-induced up-regulation of glutamate ionotropic receptor AMPA type subunit 2 (GRIA2) in neurons depended on FUS expression, consistent with a functional role for FUS in excitotoxic stress. These findings reveal molecular links among prominent factors in neurodegenerative diseases, namely excitotoxicity, disease-associated RBPs, and nucleocytoplasmic transport

    Structural basis for mutation-induced destabilization of profilin 1 in ALS

    Get PDF
    Mutations in profilin 1 (PFN1) are associated with amyotrophic lateral sclerosis (ALS); however, the pathological mechanism of PFN1 in this fatal disease is unknown. We demonstrate that ALS-linked mutations severely destabilize the native conformation of PFN1 in vitro and cause accelerated turnover of the PFN1 protein in cells. This mutation-induced destabilization can account for the high propensity of ALS-linked variants to aggregate and also provides rationale for their reported loss-of-function phenotypes in cell-based assays. The source of this destabilization is illuminated by the X-ray crystal structures of several PFN1 proteins, revealing an expanded cavity near the protein core of the destabilized M114T variant. In contrast, the E117G mutation only modestly perturbs the structure and stability of PFN1, an observation that reconciles the occurrence of this mutation in the control population. These findings suggest that a destabilized form of PFN1 underlies PFN1-mediated ALS pathogenesis

    Cyanotoxins and the Nervous System

    Full text link
    Cyanobacteria are capable of producing a wide range of bioactive compounds with many considered to be toxins. Although there are a number of toxicological outcomes with respect to cyanobacterial exposure, this review aims to examine those which affect the central nervous system (CNS) or have neurotoxicological properties. Such exposures can be acute or chronic, and we detail issues concerning CNS entry, detection and remediation. Exposure can occur through a variety of media but, increasingly, exposure through air via inhalation may have greater significance and requires further investigation. Even though cyanobacterial toxins have traditionally been classified based on their primary mode of toxicity, increasing evidence suggests that some also possess neurotoxic properties and include known cyanotoxins and unknown compounds. Furthermore, chronic long-term exposure to these compounds is increasingly being identified as adversely affecting human health

    Impact of financial compensation on enrollment and participation in a remote, mobile-app based research study

    Full text link
    Abstract Background: There is no consensus on how to determine appropriate financial compensation for research recruitment. Selecting incentive amounts that are reasonable and respectful, without undue inducement, remains challenging. Previously, we demonstrated that incentive amount significantly impacts participants’ willingness to complete various hypothetical research activities. Here we further explore this relationship in a mock decentralized study. Methods: Adult ResearchMatch volunteers were invited to join a prospective study where interested individuals were given an opportunity to view details for a study along with participation requirements, then offered a randomly generated compensation amount between 0and0 and 50 to enroll and participate. Individuals agreeing to participate were then asked to complete tasks using a remote mobile application (MyCap), for two weeks. Tasks included a weekly survey, a daily gratitude journal and daily phone tapping task. Results: Willingness to participate was 85% across all incentive levels but not significantly impacted by amount. Task completion appeared to increase as a function of compensation until a plateau at $25. While participants described the study as low burden and reported that compensation was moderately important to their decision to join, only 31% completed all study tasks. Conclusion: While offering compensation in this study did not have a strong effect on enrollment rate, this work provides insight into participant motivation when joining and participating in studies employing mobile applications

    A new method for estimating under-recruitment of a patient registry: a case study with the Ohio Registry of Amyotrophic Lateral Sclerosis

    Full text link
    We developed a disease registry to collect all incident amyotrophic lateral sclerosis (ALS) cases diagnosed during 2016–2018 in Ohio. Due to incomplete case ascertainment and limitations of the traditional capture-recapture method, we proposed a new method to estimate the number of cases not recruited by the Registry and their spatial distribution. Specifically, we employed three statistical methods to identify reference counties with normal case-population relationships to build a Poisson regression model for estimating case counts in target counties that potentially have unrecruited cases. Then, we conducted spatial smoothing to adjust outliers locally. We validated the estimates with ALS mortality data. We estimated that 119 total cases (95% CI [109, 130]) were not recruited, including 36 females (95% CI [31, 41]) and 83 males (95% CI [74, 99]), and were distributed unevenly across the state. For target counties , including estimated unrecruited cases increased the correlation between the case count and mortality count from r  = 0.8494 to 0.9585 for the total, from 0.7573 to 0.8270 for females, and from 0.6862 to 0.9292 for males. The advantage of this method in the spatial perspective makes it an alternative to capture-recapture for estimating cases missed by disease registries

    Validation of a Droplet Digital PCR (ddPCR) Assay to Detect Cyanobacterial 16S rDNA in Human Lung Tissue

    Full text link
    Cyanobacteria produce a variety of secondary metabolites, including toxins that may contribute to the development of disease. Previous work was able to detect the presence of a cyanobacterial marker in human nasal and broncoalveolar lavage samples; however, it was not able to determine the quantification of the marker. To further research the relationship between cyanobacteria and human health, we validated a droplet digital polymerase chain reaction (ddPCR) assay to simultaneously detect the cyanobacterial 16S marker and a human housekeeping gene in human lung tissue samples. The ability to detect cyanobacteria in human samples will allow further research into the role cyanobacteria plays in human health and disease
    corecore