68 research outputs found
Colocalization of neurons in optical coherence microscopy and Nissl-stained histology in Brodmann’s area 32 and area 21
Published in final edited form as:
Brain Struct Funct. 2019 January ; 224(1): 351–362. doi:10.1007/s00429-018-1777-z.Optical coherence tomography is an optical technique that uses backscattered light to highlight intrinsic structure, and when applied to brain tissue, it can resolve cortical layers and fiber bundles. Optical coherence microscopy (OCM) is higher resolution (i.e., 1.25 µm) and is capable of detecting neurons. In a previous report, we compared the correspondence of OCM acquired imaging of neurons with traditional Nissl stained histology in entorhinal cortex layer II. In the current method-oriented study, we aimed to determine the colocalization success rate between OCM and Nissl in other brain cortical areas with different laminar arrangements and cell packing density. We focused on two additional cortical areas: medial prefrontal, pre-genual Brodmann area (BA) 32 and lateral temporal BA 21. We present the data as colocalization matrices and as quantitative percentages. The overall average colocalization in OCM compared to Nissl was 67% for BA 32 (47% for Nissl colocalization) and 60% for BA 21 (52% for Nissl colocalization), but with a large variability across cases and layers. One source of variability and confounds could be ascribed to an obscuring effect from large and dense intracortical fiber bundles. Other technical challenges, including obstacles inherent to human brain tissue, are discussed. Despite limitations, OCM is a promising semi-high throughput tool for demonstrating detail at the neuronal level, and, with further development, has distinct potential for the automatic acquisition of large databases as are required for the human brain.Accepted manuscrip
Multidimensional heritability analysis of neuroanatomical shape
In the dawning era of large-scale biomedical data, multidimensional phenotype vectors will play an increasing role in examining the genetic underpinnings of brain features, behaviour and disease. For example, shape measurements derived from brain MRI scans are multidimensional geometric descriptions of brain structure and provide an alternate class of phenotypes that remains largely unexplored in genetic studies. Here we extend the concept of heritability to multidimensional traits, and present the first comprehensive analysis of the heritability of neuroanatomical shape measurements across an ensemble of brain structures based on genome-wide SNP and MRI data from 1,320 unrelated, young and healthy individuals. We replicate our findings in an extended twin sample from the Human Connectome Project (HCP). Our results demonstrate that neuroanatomical shape can be significantly heritable, above and beyond volume, and can serve as a complementary phenotype to study the genetic determinants and clinical relevance of brain structure.National Institute for Biomedical Imaging and Bioengineering (U.S.) (P41EB015896)United States. National Institutes of Health (S10RR023043)United States. National Institutes of Health (S10RR023401)United States. National Institutes of Health (K25CA181632)United States. National Institutes of Health (K01MH099232)United States. National Institutes of Health (K99MH101367)United States. National Institutes of Health (R21AG050122-01A1)United States. National Institutes of Health (R41AG052246-01)United States. National Institutes of Health (1K25EB013649-01)United States. National Institutes of Health (K24MH094614)United States. National Institutes of Health (R01MH101486
Templating hydrogels
Templating processes for creating polymerized hydrogels are reviewed. The use of contact photonic crystals and of non-contact colloidal crystalline arrays as templates are described and applications to chemical sensing and device fabrication are illustrated. Emulsion templating is illustrated in the formation of microporous membranes, and templating on reverse emulsions and double emulsions is described. Templating in solutions of macromolecules and micelles is discussed and then various applications of hydrogel templating on surfactant liquid crystalline mesophases are illustrated, including a nanoscale analogue of colloidal crystalline array templating, except that the bead array in this case is a cubic array of nonionic micelles. The use of particles as templates in making core-shell and hollow microgel beads is described, as is the use of membrane pores as another illustration of confinement templating
Multimodal characterization of the late effects of traumatic brain injury: a methodological overview of the Late Effects of Traumatic Brain Injury Project
Epidemiological studies suggest that a single moderate-to-severe traumatic brain injury (TBI) is associated with an increased risk of neurodegenerative disease, including Alzheimer’s and Parkinson’s disease (AD and PD). Histopathological studies describe complex neurodegenerative pathologies in individuals exposed to single moderate-to-severe TBI or repetitive mild TBI, including chronic traumatic encephalopathy (CTE). However, the clinicopathological links between TBI and post-traumatic neurodegenerative diseases such as AD, PD, and CTE remain poorly understood. Here we describe the methodology of the Late Effects of TBI (LETBI) study, whose goals are to characterize chronic post-traumatic neuropathology and to identify in vivo biomarkers of post-traumatic neurodegeneration. LETBI participants undergo extensive clinical evaluation using National Institutes of Health TBI Common Data Elements, proteomic and genomic analysis, structural and functional MRI, and prospective consent for brain donation. Selected brain specimens undergo ultra-high resolution ex vivo MRI and histopathological evaluation including whole mount analysis. Co-registration of ex vivo and in vivo MRI data enables identification of ex vivo lesions that were present during life. In vivo signatures of postmortem pathology are then correlated with cognitive and behavioral data to characterize the clinical phenotype(s) associated with pathological brain lesions. We illustrate the study methods and demonstrate proof of concept for this approach by reporting results from the first LETBI participant, who despite the presence of multiple in vivo and ex vivo pathoanatomic lesions had normal cognition and was functionally independent until her mid-80s. The LETBI project represents a multidisciplinary effort to characterize post-traumatic neuropathology and identify in vivo signatures of postmortem pathology in a prospective study
Three-Dimensional Traction Force Microscopy: A New Tool for Quantifying Cell-Matrix Interactions
The interactions between biochemical processes and mechanical signaling play important roles during various cellular processes such as wound healing, embryogenesis, metastasis, and cell migration. While traditional traction force measurements have provided quantitative information about cell matrix interactions in two dimensions, recent studies have shown significant differences in the behavior and morphology of cells when placed in three-dimensional environments. Hence new quantitative experimental techniques are needed to accurately determine cell traction forces in three dimensions. Recently, two approaches both based on laser scanning confocal microscopy have emerged to address this need. This study highlights the details, implementation and advantages of such a three-dimensional imaging methodology with the capability to compute cellular traction forces dynamically during cell migration and locomotion. An application of this newly developed three-dimensional traction force microscopy (3D TFM) technique to single cell migration studies of 3T3 fibroblasts is presented to show that this methodology offers a new quantitative vantage point to investigate the three-dimensional nature of cell-ECM interactions
Multidimensional heritability analysis of neuroanatomical shape.
In the dawning era of large-scale biomedical data, multidimensional phenotype vectors will play an increasing role in examining the genetic underpinnings of brain features, behaviour and disease. For example, shape measurements derived from brain MRI scans are multidimensional geometric descriptions of brain structure and provide an alternate class of phenotypes that remains largely unexplored in genetic studies. Here we extend the concept of heritability to multidimensional traits, and present the first comprehensive analysis of the heritability of neuroanatomical shape measurements across an ensemble of brain structures based on genome-wide SNP and MRI data from 1,320 unrelated, young and healthy individuals. We replicate our findings in an extended twin sample from the Human Connectome Project (HCP). Our results demonstrate that neuroanatomical shape can be significantly heritable, above and beyond volume, and can serve as a complementary phenotype to study the genetic determinants and clinical relevance of brain structure
as-PSOCT: Volumetric microscopic imaging of human brain architecture and connectivity.
Published in final edited form as:
Neuroimage. 2018 January 15; 165: 56–68. doi:10.1016/j.neuroimage.2017.10.012.Polarization sensitive optical coherence tomography (PSOCT) with serial sectioning has enabled the investigation of 3D structures in mouse and human brain tissue samples. By using intrinsic optical properties of back-scattering and birefringence, PSOCT reliably images cytoarchitecture, myeloarchitecture and fiber orientations. In this study, we developed a fully automatic serial sectioning polarization sensitive optical coherence tomography (as-PSOCT) system to enable volumetric reconstruction of human brain samples with unprecedented sample size and resolution. The 3.5 μm in-plane resolution and 50 μm through-plane voxel size allow inspection of cortical layers that are a single-cell in width, as well as small crossing fibers. We show the abilities of as-PSOCT in quantifying layer thicknesses of the cerebellar cortex and creating microscopic tractography of intricate fiber networks in the subcortical nuclei and internal capsule regions, all based on volumetric reconstructions. as-PSOCT provides a viable tool for studying quantitative cytoarchitecture and myeloarchitecture and mapping connectivity with microscopic resolution in the human brain.U01 MH093765 - NIMH NIH HHS; R01 NS070963 - NINDS NIH HHS; U01 NS086625 - NINDS NIH HHS; R21 EB018907 - NIBIB NIH HHS; R01 AG016495 - NIA NIH HHS; S10 RR019307 - NCRR NIH HHS; R01 NS052585 - NINDS NIH HHS; R01 AG008122 - NIA NIH HHS; R01 AG049899 - NIA NIH HHS; R01 EB019956 - NIBIB NIH HHS; R21 NS072652 - NINDS NIH HHS; P01 NS055104 - NINDS NIH HHS; S10 RR023043 - NCRR NIH HHS; K01 DK101631 - NIDDK NIH HHS; R01 EB006758 - NIBIB NIH HHS; P41 EB015896 - NIBIB NIH HHS; R01 NS083534 - NINDS NIH HHS; S10 RR023401 - NCRR NIH HHShttps://www.ncbi.nlm.nih.gov/pubmed/29017866https://www.ncbi.nlm.nih.gov/pubmed/29017866Accepted manuscrip
Colocalization of neurons in optical coherence microscopy and Nissl-stained histology in Brodmann’s area 32 and area 21
Optical coherence tomography is an optical technique that uses backscattered light to highlight intrinsic structure, and when applied to brain tissue, it can resolve cortical layers and fiber bundles. Optical coherence microscopy (OCM) is higher resolution (i.e., 1.25 µm) and is capable of detecting neurons. In a previous report, we compared the correspondence of OCM acquired imaging of neurons with traditional Nissl stained histology in entorhinal cortex layer II. In the current method-oriented study, we aimed to determine the colocalization success rate between OCM and Nissl in other brain cortical areas with different laminar arrangements and cell packing density. We focused on two additional cortical areas: medial prefrontal, pre-genual Brodmann area (BA) 32 and lateral temporal BA 21. We present the data as colocalization matrices and as quantitative percentages. The overall average colocalization in OCM compared to Nissl was 67% for BA 32 (47% for Nissl colocalization) and 60% for BA 21 (52% for Nissl colocalization), but with a large variability across cases and layers. One source of variability and confounds could be ascribed to an obscuring effect from large and dense intracortical fiber bundles. Other technical challenges, including obstacles inherent to human brain tissue, are discussed. Despite limitations, OCM is a promising semi-high throughput tool for demonstrating detail at the neuronal level, and, with further development, has distinct potential for the automatic acquisition of large databases as are required for the human brain.National Institute of Mental Health (Grant MH107456)National Institute for Biomedical Imaging and Bioengineering (Grant P41EB015896, 1R01EB023281, R01EB006758, R21EB018907, R01EB019956)National Institute on Aging (Grant 5R01AG008122, R01AG016495)National Institute of Diabetes and Digestive and Kidney Diseases (Grant 1-R21-DK-108277-01)National Institute for Neurological Disorders and Stroke (Grant R01NS0525851, R21NS072652, R01NS070963, R01NS083534, 5U01NS086625)NIH Blueprint for Neuroscience Research (Grant 5U01-MH093765)NIH Shared Instrumentation (Grants 1S10RR023401, 1S10RR019307, 1S10RR023043
- …