16 research outputs found

    Overexpression of miRNA-25-3p inhibits Notch1 signaling and TGF-β-induced collagen expression in hepatic stellate cells

    Get PDF
    During chronic liver injury hepatic stellate cells (HSCs), the principal source of extracellular matrix in the fibrotic liver, transdifferentiate into pro-fibrotic myofibroblast-like cells - a process potentially regulated by microRNAs (miRNAs). Recently, we found serum miRNA-25-3p (miR-25) levels were upregulated in children with Cystic Fibrosis (CF) without liver disease, compared to children with CF-associated liver disease and healthy individuals. Here we examine the role of miR-25 in HSC biology. MiR-25 was detected in the human HSC cell line LX-2 and in primary murine HSCs, and increased with culture-induced activation. Transient overexpression of miR-25 inhibited TGF-β and its type 1 receptor (TGFBR1) mRNA expression, TGF-β-induced Smad2 phosphorylation and subsequent collagen1α1 induction in LX-2 cells. Pull-down experiments with biotinylated miR-25 revealed Notch signaling (co-)activators ADAM-17 and FKBP14 as miR-25 targets in HSCs. NanoString analysis confirmed miR-25 regulation of Notch- and Wnt-signaling pathways. Expression of Notch signaling pathway components and endogenous Notch1 signaling was downregulated in miR-25 overexpressing LX-2 cells, as were components of Wnt signaling such as Wnt5a. We propose that miR-25 acts as a negative feedback anti-fibrotic control during HSC activation by reducing the reactivity of HSCs to TGF-β-induced collagen expression and modulating the cross-talk between Notch, Wnt and TGF-β signaling

    Liver progenitor cells, Cancer stem cells and hepatocellular carcinoma

    Get PDF
    There is great interest in the biology of liver progenitor cells (LPCs) because of their stem cell-like ability to regenerate the liver when the hepatocyte pool is exhausted. Barely detectable in healthy tissue, they emerge upon chronic insult in periportal regions, proliferate and migrate to injury sites in the parenchyma and eventually differentiate into hepatocytes and cholangiocytes to restore liver mass, morphology and function. The increasing worldwide shortage of livers for orthotopic transplantation means LPCs have assumed more prominence as candidates for cell therapy as an alternative therapeutic approach for the treatment of various liver diseases. However, an LPC response is usually seen in pre-cancerous liver pathologies and their high proliferation potential makes them possible transformation targets; associations that overshadow their restorative capability. This mandates that we continue to investigate the factors that govern their activation, proliferation and especially their differentiation into mature, functional cells to effectively direct transplanted cells towards regeneration and not tumorigenicity

    TWEAK and LTβ signaling during chronic liver disease

    Get PDF
    Chronic liver diseases (CLD) such as hepatitis B and C virus infection, alcoholic liver disease, and non-alcoholic steatohepatitis are associated with hepatocellular necrosis, continual inflammation, and hepatic fibrosis. The induced microenvironment triggers the activation of liver-resident progenitor cells (LPCs) while hepatocyte replication is inhibited. In the early injury stages, LPCs regenerate the liver by proliferation, migration to sites of injury, and differentiation into functional biliary epithelial cells or hepatocytes. However, when this process becomes dysregulated, wound healing can progress to pathological fibrosis, cirrhosis, and eventually hepatocellular carcinoma. The other key mediators in the pathogenesis of progressive CLD are fibrosis-driving, activated hepatic stellate cells (HSCs) that usually proliferate in very close spatial association with LPCs. Recent studies from our group and others have suggested the potential for cytokine and chemokine cross-talk between LPCs and HSCs, which is mainly driven by the tumor necrosis factor (TNF) family members, TNF-like weak inducer of apoptosis (TWEAK) and lymphotoxin-β, potentially dictating the pathological outcomes of chronic liver injury

    Role of TWEAK in coregulating liver progenitor cell and fibrogenic responses

    No full text
    Failure of fibrotic liver to regenerate after resection limits therapeutic options and increases demand for liver transplantation, representing a significant clinical problem. The mechanism underlying regenerative failure in fibrosis is poorly understood. Seventy percent partial hepatectomy (PHx) was performed in C57Bl/6 mice with or without carbon tetrachloride (CCl4)- induced liver fibrosis. Liver function and regeneration was monitored at 1 to 14 days thereafter by assessing liver mass, alanine aminotransferase (ALT), mRNA expression, and histology. Progenitor (oval) cell mitogen tumor necrosis factor-like weak inducer of apoptosis (TWEAK) and TWEAK-neutralizing antibody were used to manipulate progenitor cell proliferation in vivo. In fibrotic liver, hepatocytes failed to replicate efficiently after PHx. Fibrotic livers showed late (day 5) peak of serum ALT (35426355 IU/L compared to 93665 IU/L in nonfibrotic livers), which coincided with progenitor cell expansion, increase in profibrogenic gene expression and de novo collagen deposition. In fibrotic mice, inhibition of progenitor activation using TWEAK-neutralizing antibody after PHx resulted in strongly down-regulated profibrogenic mRNA, reduced serum ALT levels and improved regeneration. Failure of hepatocyte-mediated regeneration in fibrotic liver triggers activation of the progenitor (oval) cell compartment and a severe fibrogenic response. Inhibition of progenitor cell proliferation using anti-TWEAK antibody prevents fibrogenic response and augments fibrotic liver regeneration. Targeting the fibrogenic progenitor response represents a promising strategy to improve hepatectomy outcomes in patients with liver fibrosis

    Disruption of both HFE and TFR2 causes iron-induced liver injury

    Get PDF
    See Attache

    Evaluation of the “Cellscreen” system for proliferation studies on liver progenitor cells

    No full text
    Proliferation studies on mammalian cells have been disadvantaged by the limited availability of non-invasive assays as the majority of approaches are based on chemical treatment, sampling or staining of cells removed from culture. In this study, we utilised the Cellscreen system (Innovatis AG, Bielefeld, Germany), a non-invasive automated technique for measuring proliferation of adherent and suspension cells over time. We have evaluated the ability of the Cellscreen system to monitor and quantify growth of adherent liver progenitor cells over time and tested several applications, (i) serum reduction or (ii) treatment with a cytokine. Our results demonstrate that the Cellscreen system reproducibly documents pro- and anti-proliferative effects of cytokines and growth factors and quantifies changes by providing cell-doubling times for control and test cultures. However, we found that for the conversion of cell density values into absolute cell numbers different conversion factors, which better suit the individual growth phases, need to be established. Collectively, these findings reveal that the Cellscreen system is applicable for the determination of cell proliferation of adherent and suspension cells in response to a variety of (growth) factors. It minimises operator participation and thus enables more rapid and larger screens and, being non-invasive, permits multiple assays on the same culture of cells. Hence, this technique proves superior to the common proliferation assays opening up new dimensions of proliferation studies in cell biology

    Isolation, culture and immortalisation of hepatic oval cells from adult mice fed a choline-deficient, ethionine-supplemented diet

    No full text
    Oval cells have great potential for use in cell therapy to treat liver disease, however this cannot be achieved until the factors which govern their proliferation and differentiation are better understood. We describe a method to establish primary cultures of murine oval cells, and the derivation of two novel lines from these. Primary cultures from the livers of wildtype or TAT-GRE lacZ transgenic mice subjected to a choline-deficient, ethionine-supplemented diet comprised up to 80% oval cells at day 7 based on A6 or CK19 staining. Cell lines were clonally derived, which underwent spontaneous immortalisation following prolonged maintenance in culture. Immunostaining and RT-PCR demonstrated they express hepatocytic and biliary markers and they were therefore termed “bipotential murine oval liver” (BMOL) cells. Under proliferating culture conditions, BMOL or BMOL-TAT cells abundantly expressed oval cell and biliary markers, whereas mature hepatocytic markers were upregulated when the growth conditions were changed to facilitate differentiation. Hepatic differentiation of BMOL-TAT cells could be traced by measuring the expression of their lacZ transgene, which is driven by a promoter element from tyrosine aminotransferase (TAT), a marker of adult hepatocytes. Interestingly, haematopoietic markers were upregulated in superconfluent cultures, indicating a possible multipotentiality. None of the cell lines grew in semi-solid agar, nor did they form tumours in nude mice, suggesting they are non-tumourigenic. These novel murine oval cell lines, together with a reliable method for isolation and culture of primary oval cells, will provide a useful tool for investigating the contribution of oval cells to liver regeneration

    The role of liver progenitor cells during liver regeneration, fibrogenesis and carcinogenesis

    No full text
    The growing worldwide challenge of cirrhosis and hepatocellular carcinoma due to increasing prevalence of excessive alcohol consumption, viral hepatitis, obesity, and the metabolic syndrome has sparked interest in stem cell-like liver progenitor cells (LPCs) as potential candidates for cell therapy and tissue engineering, as an alternative approach to whole organ transplantation. However, LPCs always proliferate in chronic liver diseases with a predisposition to cancer; they have been suggested to play major roles in driving fibrosis, disease progression, and may even represent tumor-initiating cells. Hence, a greater understanding of the factors that govern their activation, communication with other hepatic cell types, and bipotential differentiation as opposed to their potential transformation is needed before their therapeutic potential can be harnessed
    corecore