40 research outputs found

    Computer Controlled Automated Assay for Comprehensive Studies of Enzyme Kinetic Parameters

    Get PDF
    Stability and biological activity of proteins is highly dependent on their physicochemical environment. The development of realistic models of biological systems necessitates quantitative information on the response to changes of external conditions like pH, salinity and concentrations of substrates and allosteric modulators. Changes in just a few variable parameters rapidly lead to large numbers of experimental conditions, which go beyond the experimental capacity of most research groups. We implemented a computer-aided experimenting framework (“robot lab assistant”) that allows us to parameterize abstract, human-readable descriptions of micro-plate based experiments with variable parameters and execute them on a conventional 8 channel liquid handling robot fitted with a sensitive plate reader. A set of newly developed R-packages translates the instructions into machine commands, executes them, collects the data and processes it without user-interaction. By combining script-driven experimental planning, execution and data-analysis, our system can react to experimental outcomes autonomously, allowing outcome-based iterative experimental strategies. The framework was applied in a response-surface model based iterative optimization of buffer conditions and investigation of substrate, allosteric effector, pH and salt dependent activity profiles of pyruvate kinase (PYK). A diprotic model of enzyme kinetics was used to model the combined effects of changing pH and substrate concentrations. The 8 parameters of the model could be estimated from a single two-hour experiment using nonlinear least-squares regression. The model with the estimated parameters successfully predicted pH and PEP dependence of initial reaction rates, while the PEP concentration dependent shift of optimal pH could only be reproduced with a set of manually tweaked parameters. Differences between model-predictions and experimental observations at low pH suggest additional protonation-sites at the enzyme or substrates critical for enzymatic activity. The developed framework is a powerful tool to investigate enzyme reaction specifics and explore biological system behaviour in a wide range of experimental conditions

    Anticancer activity of a sub-fraction of dichloromethane extract of Strobilanthes crispus on human breast and prostate cancer cells in vitro

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The leaves of <it>Strobilanthes crispus </it>(<it>S. crispus</it>) which is native to the regions of Madagascar to the Malay Archipelago, are used in folk medicine for their antidiabetic, diuretic, anticancer and blood pressure lowering properties. Crude extracts of this plant have been found to be cytotoxic to human cancer cell lines and protective against chemically-induced hepatocarcinogenesis in rats. In this study, the cytotoxicity of various sub-fractions of dichloromethane extract isolated from the leaves of <it>S. crispus </it>was determined and the anticancer activity of one of the bioactive sub-fractions, SC/D-F9, was further analysed in breast and prostate cancer cell lines.</p> <p>Methods</p> <p>The dichloromethane extract of <it>S. crispus </it>was chromatographed on silica gel by flash column chromatography. The ability of the various sub-fractions obtained to induce cell death of MCF-7, MDA-MB-231, PC-3 and DU-145 cell lines was determined using the LDH assay. The dose-response effect and the EC<sub>50 </sub>values of the active sub-fraction, SC/D-F9, were determined. Apoptosis was detected using Annexin V antibody and propidium iodide staining and analysed by fluorescence microscopy and flow cytometry, while caspase 3/7 activity was detected using FLICA caspase inhibitor and analysed by fluorescence microscopy.</p> <p>Results</p> <p>Selected sub-fractions of the dichloromethane extract induced death of MCF-7, MDA-MB-231, PC-3 and DU-145 cells. The sub-fraction SC/D-F9, consistently killed breast and prostate cancer cell lines with low EC<sub>50 </sub>values but is non-cytotoxic to the normal breast epithelial cell line, MCF-10A. SC/D-F9 displayed relatively higher cytotoxicity compared to tamoxifen, paclitaxel, docetaxel and doxorubicin. Cell death induced by SC/D-F9 occurred via apoptosis with the involvement of caspase 3 and/or 7.</p> <p>Conclusions</p> <p>A dichloromethane sub-fraction of <it>S. crispus </it>displayed potent anticancer activities <it>in vitro </it>that can be further exploited for the development of a potential therapeutic anticancer agent.</p

    Disaggregases, molecular chaperones that resolubilize protein aggregates

    Full text link

    Analytical Emission Spectroscopy in Biomedical Research

    No full text
    corecore