5 research outputs found
Cluster Analysis of Data Points using Partitioning and Probabilistic Model-based Algorithms
Exploring the dataset features through the application of clustering algorithms is a viable means by which the conceptual description of such data can be revealed for better understanding, grouping and decision making. Some clustering algorithms, especially those that are partitioned-based, clusters any data presented to them even if similar features do not present. This study explores the performance accuracies of partitioning-based algorithms and probabilistic model-based algorithm. Experiments were conducted using k-means, k-medoids and EM-algorithm. The study implements each algorithm using RapidMiner Software and the results generated was validated for correctness in accordance to the concept of external criteria method. The clusters formed revealed the capability and drawbacks of each algorithm on the data points
Microarray cancer feature selection: Review, challenges and research directions
Microarray technology has become an emerging trend in the domain of genetic research in which many researchers employ to study and investigate the levels of genes’ expression in a given organism. Microarray experiments have lots of application areas in the health sector such as diseases prediction and diagnosis, cancer study and soon. The enormous quantity of raw gene expression data usually results in analytical and computational complexities which include feature selection and classification of the datasets into the correct class or group. To achieve satisfactory cancer classification accuracy with the complete set of genes remains a great challenge, due to the high dimensions, small sample size, and presence of noise in gene expression data. Feature reduction is critical and sensitive in the classification task. Therefore, this paper presents a comprehensive survey of studies on microarray cancer classification with a focus on feature selection methods. In this paper, the taxonomy of the various feature selection methods used for microarray cancer classification and open research issues have been extensively discussed
An Empirical Investigation of the Prevalence of Osteoarthritis in South West Nigeria: A Population-Based Study
Today, Osteoarthritis remains the most prevalent chronic joint disease and a potentially incapacitating joint illness. It is an enduring health problem which cannot be cure though it can be managed. Osteoarthritis remains a serious public health problem because its burden is high, people who live with it have a greater risk of developing anxiety / or depression and if it is not properly managed, it can bring about disability as well as impairing quality of life. This paper presents a statistical correlation between the reported risk factors of Osteoarthritis and its prevalence in Nigeria. Statistical tests were performed to investigate if there is enough evidence for inferring that the risk factors for Osteoarthritis are true for the whole of Nigerian populatio
An Empirical Investigation of the Prevalence of Osteoarthritis in South West Nigeria: A Population-Based Study
Today, Osteoarthritis remains the most prevalent chronic joint disease and a potentially incapacitating joint illness. It is an enduring health problem which cannot be cure though it can be managed. Osteoarthritis remains a serious public health problem because its burden is high, people who live with it have a greater risk of developing anxiety / or depression and if it is not properly managed, it can bring about disability as well as impairing quality of life. This paper presents a statistical correlation between the reported risk factors of Osteoarthritis and its prevalence in Nigeria. Statistical tests were performed to investigate if there is enough evidence for inferring that the risk factors for Osteoarthritis are true for the whole of Nigerian populatio
Performance Evaluation: Dataset on the scholastic performance of students in 12 programmes from a private university in the south-west geopolitical zone in Nigeria
Dataset of educational performances of college students in 12 programmes in a private university in Nigeria. The overall people sampled for the observation is 2490 undergraduates excavated from 12 programmes which are as follows Computer Science (CIS), Mathematics (MAT), Electrical and Electronics Engineering (EEE), Biochemistry (BCH), Mechanical Engineering (MCE), Microbiology (MCB), Civil Engineering (CVE), Computer Engineering (CEN), Chemical Engineering (CHE), Industrial Chemistry (CHM), Information and Communication (ICE), Petroleum Engineering (PET)