6,587 research outputs found

    Forcing of Climate Variations by Mev-gev Particles

    Get PDF
    Changes in ionization production in the lower stratosphere by a few percent during Forbush decreases have been shown to correlate well with changes in winter tropospheric dynamics by a similar relatively small amount. Changes in ionization production by tens of percent on the decadal time scale have been shown to be correlated with changes in winter storm frequencies by tens of percent in the western North Atlantic. Changes in total solar irradiance or solar UV do not have time variations to match the tropospheric variations on the day to day time scales discussed here. Forcing related to magnetic activity is not supported. Thus solar wind/MeV-GeV particle changes appear to be the only viable forcing function for these day to day variations. If solar wind/particle forcing of a few percent amplitude can produce short term weather responses, then observed changes by tens of percent on the decadal and centennial time scale could produce climate changes on these longer time scales. The changes in circulation involved would produce regional climate changes, as observed. At present the relations between stratospheric ionization, electric fields and chemistry and aerosol and cloud microphysics are as poorly known as the relations between the latter and storm feedback processes. However, the capability for investigating these relationships now exists and has recently been most successfully used for elucidating the stratospheric chemistry and cloud microphysics associated with the Antarctic ozone hole. The economic benefits of being able to predict winter severity on an interannual basis, and the extent to which climate change related to solar variability will add to or substract from the greenhouse effect, should be more than adequate to justify support for research in this area

    Measurement of visible and UV emission from Energetic Neutral Atom Precipitation (ENAP), on Spacelab

    Get PDF
    The charge exchange of plasmaspheric ions and exospheric H and O and of solar wind ions with exospheric and interplanetary H are sources of precipitating neutrals whose faint emission may be observed by the imaging spectrometric observatory during dark periods of the SL-1 orbit. Measurements of the interactions of these precipitating atoms with the thermosphere are needed to evaluate the heating and ionization effects on the atmosphere as well as the selective loss of i energetic ions from the sources (predominantly the ring current)

    Energetic Neutral Atom Precipitation (ENAP)

    Get PDF
    The Energetic Neutral Atom Precipitation experiment is scheduled to be flown on the Atmospheric Laboratory for Applications and Science (ATLAS 1) NASA mission. The objective of this experiment is to measure very faint emissions at nighttime arising from fluxes of energetic neutral atoms in the thermosphere. These energetic atoms have energies ranging up to about 50 keV, and arise from ions of hydrogen, helium, and oxygen trapped in the inner magnetosphere. Some of these ions become neutralized in charge exchange reactions with neutral hydrogen in the hydrogen geocorona that extends through the region. The ions are trapped on magnetic field lines which cross the equatorial plane at 2 to 6 earth radii distance, and they mirror at a range of heights on these field lines, extending down to the thermosphere at 500 km altitude. The ATLAS 1 measurements will not be of the neutral atoms themselves but of the optical emission produced by those on trajectories that intersect the thermosphere. The ENAP measurements are to be made using the Imaging Spectrometric Observatory (ISO) which is being flown on the ATLAS mission primarily for daytime spectral observations, and the ENAP measurements will all be nighttime measurements because of the faintness of the emissions and the relatively low level of magnetic activity expected

    Vectorizable algorithms for adaptive schemes for rapid analysis of SSME flows

    Get PDF
    An initial study into vectorizable algorithms for use in adaptive schemes for various types of boundary value problems is described. The focus is on two key aspects of adaptive computational methods which are crucial in the use of such methods (for complex flow simulations such as those in the Space Shuttle Main Engine): the adaptive scheme itself and the applicability of element-by-element matrix computations in a vectorizable format for rapid calculations in adaptive mesh procedures

    Feasibility model of a video instrumentation record/reproduce system

    Get PDF
    A developmental model of an instrumentation video record/reproduce system for STADAN, ERTS, and Goddard Space Flight Center is discussed. Performance evaluations of three present-day systems and the model are presented

    Permanent and transitory policy shocks in an empirical macro model with asymmetric information

    Get PDF
    Despite a large literature documenting that the efficacy of monetary policy depends on how inflation expectations are anchored, many monetary policy models assume: (1) the inflation target of monetary policy is constant; and, (2) the inflation target is known by all economic agents. This paper proposes an empirical specification with two policy shocks: permanent changes to the inflation target and transitory perturbations of the short-term real rate. The public sector cannot correctly distinguish between these two shocks and, under incomplete learning, private perceptions of the inflation target will not equal the true target. The paper shows how imperfect policy credibility can affect economic responses to structural shocks, including transition to a new inflation target - a question that cannot be addressed by many commonly used empirical and theoretical models. In contrast to models where all monetary policy actions are transient, the proposed specification implies that sizable movements in historical bond yields and inflation are attributable to perceptions of permanent shocks in target inflation

    Revision of Star-Formation Measures

    Full text link
    Rotation plays a major role in the evolution of massive stars. A revised grid of stellar evolutionary tracks accounting for rotation has recently been released by the Geneva group and implemented into the Starburst99 evolutionary synthesis code. Massive stars are predicted to be hotter and more luminous than previously thought, and the spectral energy distributions of young populations mirror this trend. The hydrogen ionizing continuum in particular increases by a factor of up to 3 in the presence of rotating massive stars. The effects of rotation generally increase towards shorter wavelengths and with decreasing metallicity. Revised relations between star-formation rates and monochromatic luminosities for the new stellar models are presented.Comment: 5 pages, 3 figures, to appear in IAU Symp. 255, Low-Metallicity Star Formation, ed. L. Hunt, S. Madden, & R. Schneider (Cambridge: CUP

    Term Structure Transmission of Monetary Policy

    Get PDF
    Under bond-rate transmission of monetary policy, the authors show that a generalized Taylor Principle applies, in which the average anticipated path of policy responses to inflation is subject to a lower bound of unity. This result helps explain how bond rates may exhibit stable responses to inflation, even in periods of passive policy. Another possible explanation is time-varying term premiums with risk pricing that depends on inflation. The authors present a no-arbitrage model of the term structure with horizon-dependent policy perceptions and time-varying term premiums to illustrate the mechanics and provide empirical results that support these transmission channels.Interest rates; Transmission of monetary policy

    Term structure transmission of monetary policy

    Get PDF
    The sensitivity of bond rates to macro variables appears to vary both over time and over forecast horizons. The latter may be due to differences in forward rate term premiums and in bond trader perceptions of anticipated policy responses at different forecast horizons. Determinacy of policy transmission through bond rates requires a lower bound on the average responsiveness of term premiums and anticipated policy responses to inflation.Monetary policy
    corecore